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Summary. Agent’s meta-reasoning is a computational process that implements
agent’s capability to reason on a higher level about another agent or a community
of agents. There is a potential for meta-reasoning in multi-agent systems. Meta-
reasoning can be used for reconstructing agents’ private knowledge, their mental
states and for prediction of their future courses of action. Meta-agents should have
the capability to reason about incomplete or imprecise information. Unlike the ordi-
nary agents, the meta-agent may contemplate about the community of agents as a
whole. This contribution presents application of the meta-reasoning process for the
agent’s private knowledge detection within the multi-agent system for planning of
humanitarian relief operations. Three pivotal meta-reasoning technologies are dis-
cussed in the report: simulation, deduction and induction.
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Introduction

Multi-agent systems are collections of autonomous, heterogeneous agents with
specialized functionalities. The agents are usually able to carry out collective
decision making, share resources, integrate services or just collaboratively seek
for specific information. The possible application domains of such multi-agent
systems are e.g. production planning and scheduling, supply chain manage-
ment, simulation of virtual enterprisers, or coalition formation processes. Dis-
tributed problem solving architectures provide important features, e.g. ca-
pability to find ’reasonably-good’ solutions efficiently, robustness and a very
high degree of fault-tolerance, reconfigurability capabilities, ’openness’ of the
community to integrate new agents or to replace the disappearing, etc.

We have demonstrated [1] that the concept of the multi-agent system is
appropriate for planning humanitarian relief operations. The agents represent-
ing the humanitarian organizations control their actions with respect to their
private restrictions. In this contribution, we focus on detection of these con-
strains by monitoring the community communication. We use a formal model
of meta-agent presented in [2] for implementation of the meta-reasoning using
different methods of artificial intelligence.

This chapter introduces the target domain for meta-reasoning activities
and basic meta-reasoning terms. In chapter 2, we describe the abstract meta-
reasoning architectures and formal description of the reasoning processes. In
chapters 3 and 4 we describe the methods used in meta-reasoning implemen-
tation.

1.1 Meta-Reasoning and Meta-Agents

We refer to meta-reasoning as an agent’s capability to reason about the knowl-
edge, mental states and reasoning processes of other members of the multi-
agent community. We will refer to object agents which are subject of another
agent’s meta-reasoning process. Meta-reasoning can be carried out either by
the object agent or by a specific agent, whose role is only to carry out the
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meta-reasoning related process. We will refer to meta-agent as to any agent
with the meta-reasoning ability.

According to the role/contribution of the object agents in the community
to the meta-reasoning process we distinguish between two different types of
meta-reasoning:

• collaborative meta-reasoning: In this case, the object agents are aware
of being monitored, which is what they agree with and support. The pur-
pose of collaborative meta-reasoning is very often an improvement of the
object-agents’ collective behavior.

• non-collaborative meta-reasoning: In this case, the object-agents do
not want to be monitored and are not supporting the meta-reasoning pro-
cess. The meta-reasoning agent is supposed to use different techniques
rather than rely on the object agents to provide copies of their communi-
cation.

Discussion of other approaches [3, 4, 5, 6] can be found in [7].

1.2 CPlanT Multi-agent System

Planning humanitarian relief operations [1] within a high number of inten-
sively collaborating and vaguely linked non-governmental organizations is a
challenging problem. Owing to the very special nature of this specific domain,
where the agents may eventually agree to collaborate but are very often re-
luctant to share their knowledge and resources, we have combined classical
negotiation mechanisms, teamwork theory [8] with the acquaintance models
and social knowledge techniques [9].

CPlanT multi-agent system for planning humanitarian relief operations
consists of three specific classes of agents: resource-agents represent the in-
place resources that are inevitable for delivering humanitarian aid (e.g. roads,
airports), in-need agents represent the centers of conflict that call for help
(e.g. cities) and humanitarian agents represent the participating humanitarian
agencies, which contribute to humanitarian aid missions. In this report we will
be referring exclusively to the humanitarian agents when talking about object
agents.

1.3 Cooperation Structures

We will work with two key cooperation structures that will be explained below:
alliance and coalitions.

Agents can create a coalition – χ(m), a set of agents, which agreed to
cooperate on a single, well-specified mission – m. The coalition is temporary
and dissolves upon completion of the mission. When forming a coalition agents
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need to propose collaboration, bid, and negotiate. During these activities sub-
stantial part of agents private knowledge discloses.

In order to optimize the amount of the disclosed private knowledge and to
create an acceptably good coalition in a reasonable time, the community of
object agents is partitioned into several disjoint groups called alliances – λ.
All agents in an alliance agree to cooperate together, even if they can refuse
to participate in a coalition allocated for a given mission (see section A.1).

In an ideal case, the alliance members solve the requested mission exclu-
sively within the alliance. In cases when this is not possible, they need to
subcontract part of the mission to alliance nonmembers (members of different
alliances). All participating agents are still members of the coalition. Within
the report we will refer the concept of team when we partition the coalition
according to alliance membership. The coalition members from one alliance
are regarded as members of the same team.

Agents’ knowledge has been classified as (i) private – Kpr(A), the piece
of knowledge that is not accessible to any other agent (ii) public – Kp(A),
knowledge that is widely accessible to all agents and (iii) semi-private –
Ks(A), knowledge accessible reciprocally to alliance members only. For formal
definition of these classes of knowledge see [1]. This concept is very closely
related to the concept of agent’s neighborhood [9].

1.4 Acquaintance Models

According to the model of social knowledge [9], the agent’s social neigh-
borhood µ(A) is a collection of agents that are subject of agent’s A meta-
reasoning processes. While µ+(A) is a set of agents, which are monitored by
the agent A, µ−(A) is a set of all agents that monitor the agent A. Provided
that A1 denotes any agent (including meta-agents), we can say that:

∀A ∈ µ−(A1) : A1 ∈ µ+(A). (1.1)

However, in the multi-agent environment it is hard to implement a mutu-
ally shared knowledge structure that would represent agent’s social neighbor-
hood. This is why each agent maintains its social neighborhood by itself in a
special knowledge structure – acquaintance model (see [9]). Therefore, we
shall interpret the set µ+(A) as a collection of agents that the agent A inten-
tionally monitors, and the set µ−(A) as a collection of agent’s about which
the agent A knows that they monitor it.

Under such interpretation, the formula (1.1) is true in both the collab-
orative and the non-collaborative environments, while the inverse formula
∀A1 ∈ µ+(A) : A ∈ µ−(A1) is true in a collaborative environment only (as
there cannot be agents which are monitored without knowing about it).

One of the meta-reasoning tasks is to reconstruct agents’ acquaintance
models where their semiprivate knowledge is stored. In CPlanT implemen-
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tation, information about the resources, that the agent contributes with, is
encoded as semi-private knowledge.

1.5 Decision Making in CPlanT

1.5.1 Forming a Coalition

In the CPlanT coalition planning system, the agents try to collaboratively
form coalition that will work together on a specific mission. The mission
specifies properties of a requested humanitarian operation in terms of a type
of an operation (e.g. natural disaster, conflict, ...), severity, location, and pri-
marily a list of requested services (food provision, shelters provision, ...).

m = 〈id, type, degree, location, {τi}〉 (1.2)

For the mission – m to be accomplished the corresponding services – {τ}
need to be implemented. The coalition is thus a collection of agents who
commit themselves to participation in the mission by providing the requested
services.

Once there is a request for mission operation, not all agents in the commu-
nity are asked to form coalitions. Relevant agents subscribe the scenario map
for notification about disasters and respective missions. Those agents, given
the estimates of available resources of peer alliance members, construct coali-
tion proposal – χ∗(m). The coalition proposal consist of the list of possible
coalition members, the overall objective function of the coalition (e.g. price,
delivery date, ...) and the list of required services that cannot be provided
from within the alliance.

χ∗(m) = {Ai}, (1.3)

where an agent Ai is expected to provide a service τi of the mission m.
Here we assume that a service is non-decomposable and can be implemented
exclusively by a singular agent. Let us consider functions leader(χ∗(m)),
price(χ∗(m)), due(χ∗(m)) and to-do(χ∗(m)) for giving properties of the pro-
posal. These properties give an objective function that optimizes the coalition
proposal selection process.

After the coalition proposal is specified the members of χ∗(m) enter a
rather complicated negotiation process (within and outside the alliance that
the coalition leader is a member of) in order to fix a joint commitment that
will ultimately form the coalition χ(m). The coalition that will cover a specific
mission is constricted in three steps:

1. Coalition Leader Selection. Subscribed agents then inform each other
about objective function of their proposals (a function of price(χ∗(m)),
due(χ∗(m)) and (|to-do(χ∗(m))|) and compete one another. Under an as-
sumption that the agents are true telling, they allocate (using a simple
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bidding strategy) a coalition leader – an agent who covers the most
within its own alliance (the most preferred criterion) and with the short-
est delivery time (see figure 1.1). In our experiment we have allowed only
a limited number of agents to be subscribed for a single location in the
map. As the bidding strategy is based on broadcasting we cannot easily
scale this solution for higher number of agents.
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Fig. 1.1. Schema of interagent communication.

2. In-alliance Coalition Formation. The coalition leader tries to form a
part of the coalition from his alliance members. Given the knowledge in
its acquaintance model, the coalition leader directly requests the agents
for (i) participating in a mission that will take place in specific place and
will be coordinated by the specific coalition leader and (ii) providing the
required resources (see figure 1.2). While the coalition leader knows about
resources availability, it is not aware of agents’ private knowledge that
may restrict it to work under certain agents’ leadership (eg. army unit)
or a specific place (e.g. place with major population of muslims)

3. Inter-alliance Coalition Formation. Coalition leader tries to subcon-
tract – using the contract net protocol – other agents to contribute with
services the remaining requested services. In order to lower down the com-
munication burden we will not want the coalition leader to do complete
broadcasting. Instead only one member of each alliance (for simplicity we
will refer in this report to this agent as a team-leader) is asked for the
resources on behalf of the entire alliance. (see figure 1.3). Team leader
provides the coalition leader with a suggested service provider(s). Upon
an approval from the coalition leader, the team leader is asked to request
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Fig. 1.2. Schema of interagent communication.

the resources from the suggested provider(s) in the same manner as above.

1.5.2 Goals of Meta-Reasoning

When re-constructing agents decision-making models we are interested in
(i) how a coalition proposal can be created and (ii) how the actual coali-
tion can be negotiated. Therefore, we have to monitor and reason about a
coalition formation process (forming χ∗(m), answering a question of a type
’what-coalition-will-be-proposed? ’) and find out whether agents will eventu-
ally provide requested services (forming χ(m), answering a question of a type
’what-coalition-will-the-agents-finally-approve? ’).

Semiprivate Knowledge

The coalition formation process is given by negotiation capabilities of the
coalition leader (that takes care for what can be provided from within the
alliance) and team leaders (who suggest service providers form outside of the
alliance). In order to understand coalition/team leader decision making (how
χ∗(m) can be constructed) we need to acquire knowledge that the coalition
leader stores in its acquaintance model. As explained above, in the acquain-
tance model there is semi-private knowledge describing agents resources. Pro-
vided that the meta-agent can access the copies of agent messages, this task
is easy, as the acquaintance models are maintained by means of the inter-
alliance communication. The meta-reasoning, for which we use the concept of
reasoning simulation is described in section 4.1. Given the accessible semi-
private knowledge reasoning simulation may provide prediction of the phase
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Fig. 1.3. Schema of interagent communication.

1 (Coalition Leader Selection) and phase 2 (In-alliance Coalition Formation)
of the coalition formation process.

Private Knowledge

For understanding the decision model of an alliance member (how we can
arrive from χ∗(m) to χ(m), in other words to know whether the agent will
provide the requested services) we need to identify its private knowledge that
specifies primarily agents collaboration preferences and restrictions. This piece
of knowledge cannot be simply re-constructed from the communication ex-
change. It need to be identified by the deductive or inductive meta-reasoning
process.

In the CPlanT system, every agent A in the community has a decision
making algorithm ψA which the agent uses to decide whether it will accept
the specific team – χ∗(m):



10 1 Introduction

ψA(χ∗(m)) →

{

yes A accepts χ∗(m) proposal,
no A refuses χ∗(m) proposal.

(1.4)

Different agents decide on top of different sets of their private knowledge
– Kpr(A)1. Agent tries to verify whether the acceptance of participation in
given team is consistent with its knowledge (including also public knowledge
– Kp(A)):

ψA(χ∗(m)) →

{

yes ⇐⇒ Kp(A) ∪ Kpr(A) ` accept(χ∗(m))
no ⇐⇒ Kp(A) ∪ Kpr(A) 6` accept(χ∗(m))

(1.5)

In the same manner, we may introduce an abstract notion of the commu-
nity decision making algorithm that shall predict whether the community of
agents θ will be able to fulfill the team request with the mission m:

ψθ(m) → yes ⇐⇒

∃χ∗(m) ⊆ θ ∀A ∈ χ∗(m) : Kp(A) ∪ Kpr(A) ` accept(χ∗(m))
(1.6)

Similarly for rejection.
Let us assume that we work with a multi-agent system where agents com-

municate using FIPA-like communication protocols2. Detecting agents’ pri-
vate knowledge is based on observation of the REQUEST interaction protocol.
An agent replies to a request message by an accept message if it agrees to
provide the requested services for the mission while it replies with a refuse

message if he does not like to be part of the proposed coalition.
Unlike in the classical REQUEST interaction protocol, where in the content

of the message, there is the requested service, in CPlanT system, the proposed
team is send in the body of the message.

Predicting object agent’s decision can be used for e.g. improving efficiency
of the collective behavior, reduction of communication traffic or improving
the quality of the coalition.

In the sections 4.2 and 4.3, we explore possibilities of usage automated rea-
soning and machine learning algorithms for the answering whether an agent
will eventually accept participation in a coalition and provide requested re-
sources.

1 In this paper, we suppose, that the set Kpr(A) is unchangeable during the whole
agent’s life.

2 which is the case of CPlanT
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Abstract Meta-Agent Reasoning Architecture

The central point of the meta-agent’s operation is an appropriate model of
the community. This model has to be expressed in an appropriate language of
adequate granularity. As any other high-level knowledge structure, the model
can be represented in implicit way, (e.g. piece of procedural program, charac-
teristic function or set of rules) or in explicit way, logical theory that consists
of the true fact that the meta-agent knows about the object agents. The model
can be treated in two possible ways. It can be either maintained by

• deductive reasoning techniques, when the model contains only formulae
that logically follow from the monitored information (e.g. the model will
not be in conflict with a future possible event that may happen in the
future), or

• inductive reasoning techniques that may produce an approximative
model that includes e.g. generalization formulae, that may prove to be
in conflict with a future possible event.

The former type of reasoning produces an exact and ’safe’ model of the com-
munity. The latter type of reasoning may provide more information while it
can misclassify. For the approximative model see section 2.4. In the following
we will be explaining the concept of deductive meta-reasoning.

2.1 Model

Let us denote any fact ϕ, that the meta-agent knows about an agent A by the
predicate belA(ϕ). This shall be any formula that contains a predicate(s) with
A in its argument. We denote the formula belθ(ϕ) a fact ϕ that the meta-agent
knows about the community of agents θ1. It contains formulae that contain
a predicate(s) with any of the agents A ∈ θ in its/their argument(s). Let us
call either of these formulae a belief-formula. Now, we may define the explicit

1 θ denotes any sub-community of the whole community of the agents: θ ⊆ Θ [7].
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model of the community maintained by the meta-agent Am as a collection of
such a belief-formulae:

model(µ+(Am)) =
{

ϕ| ∃ θ ⊆ µ+(Am) : belθ(ϕ)
}

. (2.1)

Generally we have three basic types of belief formulae in the explicit model
of the community. For any reasonable manipulation with the model we need
to specify the relevant default properties of the object-level community. We
will assume these properties to be generally true, to be always true and to
be known to all agents before any event in the community happens. Let us
call these formulae background-belief-formulae and denote them by the
predicate gb(ϕ). The meta-agent Am is expected to store all formulae these in
the knowledge structure referred to as the background-belief-base – gbb,
formally:

∀ϕ : gb(ϕ) ⇔ ϕ ∈ gbb. (2.2)

In the machine learning domain this knowledge is often referred to as the
background knowledge. In the most transparent case, this is a theory in first
order logic.

Besides, we have facts that were acquired by the meta-agent monitoring
capabilities and they very often correspond to the events that happened in
the community. Such a fact is referred to as a event-belief-formulae. Let us
denote such a formula that represents an event happening in the time t by the
predicate ebt(ϕ) stored in meta-agent’s event-belief-base – ebbt(µ

+(Am)),
formally:

ebbt(µ
+(Am)) = {ϕ|∃ti ≤ t : ebti

(ϕ)} (2.3)

In the following text, we will denote eventt a formula ϕ such a ebt(ϕ).
Finally we have the assumed-belief-formulae (denoted as abt(ϕ) that

are products of the meta-reasoning process facts that happened in the com-
munity. In the same way, these are stored in the meta-agent assumed-belief-
base – abbt(µ

+(Am)), that is formalized similarly to 2.3.
Using the explicit representation we will want at any time instance the

meta-agent’s model of the object level community to consist of these three
knowledge structures:

modelt(µ
+(Am)) = gbb ∪ ebbt(µ

+(Am)) ∪ abbt(µ
+(Am)). (2.4)

2.1.1 Model Maintenance

Now, let us briefly mention how the model may be constructed and exploited.
The meta-reasoning process in multi-agent system is built upon three mutually
interconnected computational processes (figure 2.1):

1. monitoring – process that makes sure that the meta-agent knows the
most it can get from monitoring the community of object agents. This
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process builds the base of the model – model of the community and imple-
ments the introspective integrity (in the sense of [10]). assure perfectness
of the model.

2. reasoning – this process manipulates the model of the community so that
true facts (other than monitored) may be revealed. Within the reasoning
phase, the meta-agent tries to maintain truthfulness of the model.

3. community revision – a mechanism for influencing operation of the
object agents’ community. This process is inevitable if the meta-agent
reasoning phase results in such a goal hypothesis, that is not true in
the community, while it ought to be (such as efficiency improvements or
agents’ awareness of the intruder operating in the system). In this phase,
the meta-agent may also affect the operation of the community in order
to improve the meta-reasoning process.

Fig. 2.1. Meta-Reasoning Architecture – A Process View

In this document, we will discuss the reasoning phase in more details.
Description of the monitoring phase and the community revision phase can
be found in [2].

2.2 Monitoring

The key difference between classical reasoning task and meta-reasoning task
in multi-agent systems is that the latter task need to be supported by the
monitoring process. The monitoring process enables reasoning in multi-agent
systems due to the ability to generate event belief formulae from the mon-
itored observations. The observation depends on the monitoring approach
and possibilities of the object agents community. It can be for example: copy
of the communication act between the object agents, information about an ob-
ject agent’s internal state change, etc. The monitoring process then generates
the event belief formula in the form suitable for the use of reasoning technol-
ogy, for example: unit clauses for version space algorithm, logical formulae for
automated reasoning or ILP technology, etc.
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2.3 Reasoning

Now, we will talk about the reasoning process in more details. The meta-
reasoning agent’s reasoning operation can be carried out in three different
phases:

• inittime: initialization time when the meta-agent starts to reason about
the system before it receives any event from the community,

• revisetime: the instance of the time when an event in the community
happens and the community model is automatically revised and

• inspecttime: when the user (or other agent possibly) queries the model
in order to find out about truthfulness of the goal hypotheses.

Balancing the amount of computational processes in the revisetime and
the inspecttime is really crucial. The proper design depends on the required
meta-reasoning functionality. While for visualization and intrusion detection
the most of computation is required in the revisetime, for explanation, sim-
ulation and prediction an important part of computational processes will be
carried out in the inspecttime.

2.3.1 Community Model Revision

Let us introduce the community model revision operator – ], that is
expected to happen in the revisetime exclusively. The community model re-
vision represents the change of the model modelt in the time t with respect to
the new formula eventt that describes an event in the object-level community
θ2:

modelt(θ) ] eventt → modelt+1(θ) (2.5)

There are different types of events that initiate the community model
revision process in the revisetime. We talk primarily about initiating a
contract-net-protocol, team allocation request, accepting or rejection of the
team allocation request, informing about actual resources, etc. (described in
appendix A).

In the case of deductive meta-reasoning , we may distinguish between two

marginal effects of the community revision operation – ]max and ]min as
follows:

modelt(θ) ]
max eventt = {ϕ|modelt(θ) ∪ {eventt} ` ϕ} (2.6)

modelt(θ) ]
min eventt = modelt(θ) ∪ {eventt}, (2.7)

where ϕ is a formula.

2 In tho following text: θ = µ+(Am).
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The ]max operator revises the model so that it contains all possible true
facts that logically follow from the original model – modelt(θ) combined with
the new event – eventt. The ]min operator only appends the new formula
to the model. In many cases, the ]max operator is hard to achieve as the
resulting model may be infinite – we introduce such a model as an abstract
marginal concept. The model that results from the ]min model revision shall
be always a subset of the model constructed by ]max operator.

When designing the community model revision process, we seek such an
operation ] that

modelt(θ) ]
max eventt ⊇ modelt(θ) ] eventt ⊇ modelt(θ) ]

min eventt (2.8)

The closer our operation gets to ]min the faster is the model revi-
sion process and more complex should be the computational process in the
inspecttime. The closer we are to ]max the easier should be the query process
while the revision process is getting really complex.

The background belief base gbb does not change in the time. Only the
ebbt(θ) changes if the community revision operator ]min is used, while both
ebbt(θ) and abbt(θ) change in the time if another community revision operator
is used.

The concept of model revision is closely related to the concept of weak
and strong update in the knowledge engineering area [11].

2.3.2 Community Model Inspection

During the inspecttime (in any time t), the computational process of com-
munity model inspection provides the user (or any other agent) the reply
for a queried question – goal formula (goalt). We introduce an operator #

for model inspection, which replies as follows:

modelt(θ) # goalt →











yes if goalt is provable in modelt(θ),

no if ¬goalt is provable in modelt(θ),

unsure otherwise.

(2.9)

If the considered goal formula contains existentially quantified variables, the
reply can also contain their possible substitution.

In the case of deductive meta-reasoning , the minimal version of the com-
munity model inspection process corresponds directly to checking occurrence
of the goal formula within the model. The relevant formula can be retrieved
from the model with no further reasoning.3

3 The goal formula can contain existentially quantified variables that get bound to
constants during the instantiation process.
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modelt(θ) #
min goal →











yes if goal ∈ modelt(θ),

no if ¬goal ∈ modelt(θ),

unsure otherwise.

(2.10)

In order to use the minimal version of the model inspection in the in-
specttime, we need the maximal (or close to maximal) model revision (]max)
in the revisetime of the meta-reasoning life-cycle.

If the reasoning triggered by the event (in revisetime) has not produced
the queried formula, the inspection process will be a more complex operation
than simply parsing the existing model. The meta-agent is expected to employ
reasoning in order to find out whether the requested goal formula logically
follows from the model:

modelt(θ) # goal →











yes if modelt(θ) ` goal

no if modelt(θ) ` ¬goal

unsure otherwise.

(2.11)

2.4 Approximate Model of the Community

Besides representing the model of the object agent community as a logical
theory it can be also represented by an appropriate approximation ψ∗

A of the
object agent’s decision algorithm ψA .

The problem of revealing ψ∗
A can be transformed to the problem of learning

unknown function, e.g. in the words of machine learning. Every event eventt

is decomposed into a pair containing the request for specific service τt and
object agent’s reactions: eventt = [τt, ψ(τt)], where τt also specifies question
that can be answered by learned ψ∗

A algorithm. Therefore, we use the history
of all prior events stored in the event belief base as a training set. It is stored
in the following format:

ebbt = {[τi, ψ(τi)]}0≤i≤t (2.12)

The ebbt event belief base and gbb background belief base are stored in con-
structed model modelt.

2.5 Properties of the Model

Let the community model be defined as in 2.1. Suppose, that it is possible to
decompose the model model(θ) of the community θ to the models of singleton
agents Ai ∈ θ. We say that such model is decomposable:

model(θ) =
⋃

A
i
∈θ

model({Ai}), (2.13)
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where model(Ai) denotes a meta-reasoning model of the singular agent Ai. If
such a decomposition is not possible, we call the model undecomposable.
This is the case of emergent behavior in the multi-agent systems, where there
is no single agent that would approve participation in the mission itself, while
collectively the group can do it.

In both cases, the models contain the same information, but every type is
suited to a different task of meta-reasoning.

2.5.1 Decomposable models.

A decomposable model can be created as a union of object-agents’ models.
Then, there can be directly represented information about singleton agent’s
decision models. While the information about the community as whole can be
acquired only by the simulation of all object agents. Decomposable model can
be effectively used for prediction and explanation of singleton agent’s reaction.

2.5.2 Undecomposable models.

An undecomposable model contains directly the information about the com-
munity, while the information about agent’s decision making algorithm is rep-
resented only implicitly – in some cases, it can be extracted by a restriction of
the model (this case occurs also in our domain). The model is undecomposable
if it contains any knowledge about emergent behavior of object community,
i.e. behavior, that is not peculiar to any member of the community. Unde-
composable model can be used to find out more general information about
the community of object agents. It can be used e.g. for visualization.

Example 1 Decomposable and undecomposable models.

We have a task to reason about a neural network (as an abstraction of a set of object-
level agents). If we want to create a decomposable model, we should monitor every
singleton neuron and find out how does it work. But this knowledge will not say us
how the whole neural network is evaluating a given input. We can only simulate all
neurons to get the output value. Creating an undecomposable model, we monitor
only the inputs and outputs of the whole network. Created model can be able to
evaluate given inputs, but does not have to contain any knowledge about singleton
neurons.

While the version space algorithm (see section 4.3.1) works with decompos-
able models only, automated reasoning (section 4.2) and ILP (section 4.3.2)
work with both types of model.

2.5.3 The concept of model
T(θ) and model

G(θ)

We shall distinguish between two basic types of model updating: ]T and ]G.
The ]T tries to generate all true facts about the object-level community and
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stores them in the model modelT(θ). Then, when the goal formula is asked,
the # operator tries to find out whether this formula or its negation is implied
by the modelT(θ) model. If it is, the reply is yes or no. Otherwise, the reply
is unsure.

The ]G tries to find out more general rule which distinguishes positive
and negative events. This rule is then evaluated for a given goal when the
# operator is used. This rule can be found out by e.g. a machine learning
algorithm.

There is one substantial difference between these two approaches. All cre-
ated facts in the modelT(θ) are valid and they stay valid even as new events
come. We can say that the model is monotonic in time (we suppose monotonic
behavior of object agent). While, the modelG(θ) can change the evaluation of
goals that have not been in ebb. The advantage of this approach is that we do
not need any information about the object agent’s decision making algorithm,
even thought this information can significantly improve the quality of created
model.

Both operators maintain consistency of created model with the processed
events and background theory. First approach also ensures the correctness (it
will always respond correctly or unsure)4:

modelT(θ) # goal → yes ⇒ modelG(θ) # goal → yes ,

modelT(θ) # goal → unsure ⇒ modelG(θ) # goal →







yes , or
no, or
unsure,

modelT(θ) # goal → no ⇒ modelG(θ) # goal → no,

(2.14)

where

modelT(θ) = model0 ]T ebb,

modelG(θ) = model0 ]G ebb.

In this work, the ]T operator is represented by the resolution principle (sec-
tion 4.2) and the ]G operator is implemented using inductive logic program-
ming (section 4.3.2). The version space algorithm (section 4.3.1) creates hy-
potheses in the form of modelG(θ), but by working with all possible hypotheses
it implements the ]T operator.

4 All knowledge structures and operations are assumed here to be true and per-
formed at the same time. The t index has been omitted here for simplicity.
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Meta-Reasoning in CPlanT: Monitoring

The monitoring process enables meta-reasoning activities in multi-agent sys-
tems with generating of event belief formulae. The event belief formulae can
be generated from the copies of the messages, from the observation etc. We
distinguish between two basic environments:

• collaborative environment – the object agents are aware that they are
monitored and they support it and

• non-collaborative environment – the object agents do not want to be
monitored and they do not provide the meta-agent with any support.

We focused on both types: collaborative and non-collaborative environ-
ment. There are technologies appropriate for the monitoring process in col-
laborative environment [12]. However, we have suggested a novel technology
(based on the intruder agents) for the monitoring process in non-collaborative
environment. The intruder agent acts as an ordinary object agent. It observes
the environment and it generates event belief formulae. We have designed col-
laboration mechanisms and social commitments between the intruders. Meta-
reasoning process will be improved in the sense of the number of generated
event belief formulae. We have designed a proactive approach to monitoring
where the meta-agent is able (via intruders) to affect the operation of the
multi-agent system and the meta-reasoning process in general.

3.1 Short Review of Approaches to Monitoring

This section has been integrated already in the report [7]. For the sake of
clarity and completeness of this report we have decided to repeat the review
in this place.

Previously, people investigated ways of monitoring teams and communities
of either competing or collaborative agents [13]. In principle, we distinguish
between the query-based and subscription-based monitoring [12]:
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• query-based monitoring, when the meta-reasoning agent itself is trying
to detect new information or inspect validity of the already stored knowl-
edge. The query-based (active) monitoring can be implemented by commu-
nication where the meta-agent periodically checks with the object agents
whether the monitored information has been changed. This has been done
previously by periodical revisions [14], [15]. Similar option is implicit mon-
itoring via environment where the agents act and interact. Huber and
Kaminka [16], [13] suggest active monitoring via plan-recognition.

• subscription-based monitoring, when the meta-reasoning agent gets
notified when truthfulness of the monitored proposition changes [17]. This
type of monitoring is usually implemented by the subscribe-inform con-
versation protocol. The subscriber queries/subscribes an object agent for
information that describes its computational state, beliefs, or goals. The
object agent replies and keeps informing the subscriber each time this in-
formation becomes invalid. In [13] there was introduced the monitoring
selectivity problem i.e. the challenging problem of deciding how much of
monitoring is relevant and necessary for performing the required reflective
task.

Naturally, the most appropriate monitoring/meta-reasoning component of
a multi-agent system would be its central communication element (agent).
Here the information can be collected and analyzed. From many important
reasons such as robustness and fault tolerance of the system, autonomy of
agents, assuring information privacy, dynamics and flexibility of the system,
we wanted to avoid such a centralized approach.

If the object agents act autonomously and communicate peer-to-peer, a
meta-reasoning agent may monitor the communication traffic by observing the
communication exchange among the object agents. It subscribes the object
agent for copies of communicated messages. This philosophy distinguishes the
central communication agent from the meta-agent. Had the former one failed
to operate, the entire community is paralyzed and can not continue to operate,
while the operation of the latter one is independent from functioning of the
community of object agents.

A more complicated problem, which has not been studied thoroughly yet,
is monitoring of the object agents that do not want to be monitored (in
the case of non-collaborative meta-reasoning). Another challenging problem is
monitoring a community of agents in distributed manner. Several monitoring
agents may be in charge of monitoring different parts of the community, in
different times or monitoring different aspects of object agents’ operation.

The monitoring process has been investigated in the past. The object
agent’s state reconstruction is performed in [18]. The domain is character-
ized by the huge amount of the communication acts, which are replaced by
probability propagation over the possible states and restricted by the team ori-
ented program. The socially attentive monitoring for failures identification in
inter-agent communication has been reported in [13]. We will exploit a similar
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approach in non-collaborative environment, where we will identify the object
agent’s behavior patterns from the commitments between the object agents.
The main difference between our domain and the socially attentive monitoring
domain is in the amount of the communication acts. Our domain is charac-
terized by a limited amount of communication acts with the information-rich
content of the messages.

3.2 Monitoring in Collaborative Environment

In collaborative environment the object agents support the meta-reasoning
process. They can be informed about the meta-reasoning results and to use
new knowledge for efficiency improvement of their decision making process
[19]. This is the reason why they support it. We have designed and imple-
mented the reasoning simulation (see section 4.1) technique for deducing the
event belief formulae from the copies of their messages.

3.2.1 Subscription-based Monitoring

The meta-agent subscribes the object agents for informing about any changes
of monitored state of the object agent [12]. In our case, the meta-agent sub-
scribes the copies of the messages between the object agents [19].

The meta-agent subscribes the object agents for copies of the messages via
a mask. The mask is defined with specific performative, ontology, language
and performative of the message content. The mask defines if the message is
sent or received by the object agent. The meta-agent subscribes the object
agent via several masks. The subscribed object agent compares sent/received
message with a set of the masks. If any mask matches the copy of the message,
it is forwarded to the meta-agent.

Example 2 The mask definition.

The mask sent to the object agent ”Suffer Terra Government” can be defined in a
such way:

Sender: X
Receiver: ”Suffer Terra Government”
Performative: request
Ontology: cplant
Language: kif

Now the object agent ”Suffer Terra Government” forwards any received message with
performative ”request”, ontology ”cplant” and language ”kif” to the meta-agent.
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3.2.2 Generating Event-Belief Formulae

The event belief formulae for the meta-reasoning process are generated from
the copies of the object agents’ communication acts. There can appear two
types of the messages:

• these, from which we can directly generate the event belief formulae with-
out further analysis and

• these, which have to be submitted to a reasoning simulation process in
order to generate an event belief formulae.

The event belief formulae generation from the second type of the messages is
more complicated, it is described in section 4.1.

There are two situations when event belief formula is generated without
further analysis:

• the object agent has accepted the team allocation request – there are
generated the event belief formulae informing about it and that the team
leader accepts the number of the team members equivalent to the team
proposed within the task in the team allocation request,

• the object agent has refused the team allocation request – there are gener-
ated the event belief formulae informing about it and that the team leader
accepts the number of the team members equivalent to the team proposed
within the task in the team allocation request.

See section B for the technical description of the monitoring process in
collaborative environment.

3.3 Monitoring in Non-collaborative Environment

There are several applications of the multi-agent systems where the agents
own private knowledge [1]. They try to keep the private knowledge then they
do not want to be monitored to disable reasoning about them. We suggest a
specific approach how to reconstruct the information about the object agents,
provided they do not support the meta-reasoning activity. This approach is
based on creation of a fake agent, that besides an ordinary agent’s functionality
is capable of triggering a required activity of the community and it has an
access to the resulting event belief formulae. We have proposed and designed
a special type of the agent intruder agent for the monitoring process in non-
collaborative environment. In the community, there operate several intruders,
they are aware of each other and cooperate. The intruder agent can take two
roles:

• it observes the environment and it generates the event belief formulae and
• it generates stimulation events [2] to the community of the object agents in

order to initiate requested behavior and acquire the corresponding event
belief formulae (see proactive monitoring in section 3.4).
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3.3.1 Monitoring with Intruders

Intruder registers with the community and joins an alliance. If it succeeds
it has an access to the object-agent’s semiprivate knowledge and it is able
to generate the event belief formulae about the alliance members. The event
belief formulae are forwarded to the meta-agent for further analysis. Intruders
act as a ordinary object agent. They provide the alliance with services in
coalition planning process but they take the role neither of the team leader
nor of the coalition leader. They are passive, they observe only. The meta-
agent controls them.

Community Coverage

We say that the intruder agent Ai
j covers the object agent if the object

agent is in the monitoring scope of the intruder agent – Ai ∈ µ+(Ai
j). Please

note, that the property defined in (1.1) is not valid in the non-collaborative
environment and thus we do not require the monitored agent to monitor the
intruder. We say that the object agent Ai is covered only if there is any
intruder agent, which covers the object agent – ∃Ai

j : Ai ∈ µ+(Ai
j). The

community of the object agents is fully covered only if all the object agents
are covered.

The important notion is the degree of the coverage. It depends on the
amount of generated event belief formulae and deduced knowledge within the
revisetime and the inspecttime. This concept has not been fully elaborated
until now.

Intruders and meta-agent are aware of the community coverage. The meta
agent has to process the situation when a new object agent appears in the
community. It waits for a specific time limit if the new object agent will
be covered by any existing intruder, otherwise the meta-agent creates a new
intruder (see below). The intruder agent, which covers an object agent who has
just deregistered, informs other intruders and the meta-agent. The intruder
deregisters from the community if it covers no object agent.

Activation of New Intruder

The meta agent assigns to the intruder the parameters of the object agent
which should be covered – monitored object agent (city, country, type). The
meta agent knows the monitored object agent’s parameters because it is a
public knowledge accessible within whole multi-agent system [1]. It assigns to
the intruder available services, meta-agent’s name and names of other existing
intruders. The new intruder agent finds the meta-agent, existing intruders and
the monitored object agent within the registration phase.

When the intruder finishes the registration process, it continues with an
alliance forming process. The intruder negotiates with the monitored object
agent. If the negotiation succeeds (the monitored object agent would accept



24 3 Meta-Reasoning in CPlanT: Monitoring

the intruder as a new alliance member) the intruder receives alliance members
of the monitored object agent. The intruder continues to negotiate step by step
with other alliance members. If any object agent refuses the request for the
alliance participation the intruder agent informs the meta-agent that alliance
formation process was unsuccessful.

The meta-agent assigns new parameters to the intruder agent if the alliance
formation process was unsuccessful. The new parameters are determined by
the monitored agent’s alliance members. The meta-agent has to wait for a
new monitored object agent’s alliance member if there either is no alliance
member now or parameters of all monitored abject agent’s alliance members
were tested. It is possible that the intersection of the alliance restrictions of
the object agents in one alliance is empty set. Such an alliance has to be
monitored by proactive monitoring (see section 3.4).

The intruder informs the meta-agent and other intruders when it joins
the monitored object agent’s alliance. It subscribes the object agents for their
services and it is prepared for the participation in planning phases and for
event belief formulae generation.

3.3.2 Generating Event Belief Formulae in Non-collaborative
Environment

The intruder is an ordinary alliance member. It participates in team allocation
process and with services in resource allocation process. There are two results
of the team allocation process: the team has been allocated successfully (the
resource allocation process has already started) and the team has not been
allocated because any member has refused the task. There are two possible
event belief formulae that may be generated when the team has been allocated:

• all the team members except the team leader accept the task and
• the team leader accepts the number of the team members equivalent to

the team proposed within the task in the team allocation request.

The event belief formulae are generated when the team allocation process
failed:

• one of the team members besides the team leader does not accept the task
proposed within the team allocation request and

• the team leader accepts the number of the team members equivalent to
the team proposed within the task in the team allocation request.

3.3.3 Collaborative Monitoring

The object agents adopt their decision making algorithm with respect to un-
successful attempts to allocate a team. The intruders would not be able to
detect team rejections if they were not present in the system when the team
has been allocated unsuccessfully. The intruders are not able to generate event
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belief formulae about the team leaders’ restrictions, because the team leader
does not contract itself when it allocates the team. These reasons are why the
intruders have to cooperate. They have to share allocated services within the
teams in order to detect similar situations. Then the intrudes could generate
event belief formulae when these situations appear:

• any object agent could participate with the services within the team but
it has not been included in the team,

• the team leader could participate with the services but it did not.

The monitoring efficiency should be improved in the sense of the number
of generated event belief formulae. This is due to the ability to generate event
belief formulae about the team leader and about the team rejections from the
time, when the intruders did not participate in the community.

3.3.4 Socially-Attentive Monitoring

The intruder does need to be included in the team. It should be able to recon-
struct allocated team even in the case that the intruder does not participate.
We were inspired by [13] where the social commitments are used for improving
of the monitoring efficiency. The intruder is able to detect the team members
without its participation due to the social commitments (subscribe/advertise
mechanism) cross monitored alliance. Due to the socially attentive and col-
laborative monitoring the intruders can generate not fully instantiated event
belief formulae even in the cases when they participate in no team. The mon-
itoring efficiency should be improved in the sense of the number of generated
event belief formulae. This is due to the ability to reconstruct the teams even
in the case that not all intruders participate within the team.

3.4 Proactive Monitoring

Very often the community of object agents performs so little activity or a pat-
tern of activity that is little relevant to the course of desired decision making
process. In such a case the meta-agent needs to wait until required infor-
mation will be available. Alternatively, the meta-agent may want to initiate
such an activity within the community that the desired event happens. The
meta-agent need to know:

• which is the desired event
• how this event can be initiated

For answering the first question we suggest to use the concept of abductive
reasoning that has been successfully used in the domain of expert systems
in the past. In the collaborative environment the meta-agent may simple send
a REQUEST message to the agent in question, in order the event to happen.
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However, in the adversarial domain, this is rather more difficult and we need
to use e.g. the intruders who interact with the ordinary object agents.

Proactive monitoring is not covered by this project report.



4

Meta-Reasoning in CPlanT: Reasoning

Given the right knowledge structure describing the object level community –
model, the reasoning process within meta-reasoning is given by two reasoning
operators: (i) the community revision operator ] and (ii) the community in-
spection operator #. Meta-agent based on this abstract architecture has been
implemented for agent’s private knowledge detection in the CPlanT multi-
agent system. We have implemented three distinct reasoning methods that
represent completely different approaches to AI reasoning:

• Deduction: where we use explicit representation of true facts in the com-
munity and techniques of theorem proving and automated reasoning as
reasoning operators.

• Induction: where we construct and administer hypothesis about singular
agent’s decision rule and we use machine learning algorithms to revise and
inspect the model.

• Simulation: where we simulate coalition/team leaders decision making
model Both methods use the same monitoring process.

While deduction and induction is used for private knowledge detection, the
simulation mechanism processes the semiprivate knowledge and tries to pre-
dict a coalition proposal that would be suggested by the respective coali-
tion/team leader.

4.1 Simulation

The object agent may have two reasons why it refuses the mission within the
team request from the coalition leader:

• the mission parameters do not comply with its private knowledge describ-
ing collaborative behavior preferences and restrictions, or

• neither the agent himself nor its alliance member has available resources
to provide the coalition with.
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We monitor the object agents’ semi-private knowledge and the object
agent’s acquaintance model to be able to distinguish these two situations
and in order to improve the monitoring process in the sense of the number of
generated event belief formulae. We are able to generate more event belief for-
mulae if we simulate the object agent’s decision making algorithm that it uses
for the contract net protocol negotiation, which is before the team allocation
process [1].

The meta-agent stores an acquaintance model (see 1.4) that includes a
yellow-page list of all object agents in the community. In additional, the meta-
agent stores copies of the acquaintance models of the object agents (only in
collaborative environment). It keeps the object agents’ acquaintance models
by means of tracking the social commitments between the object agents within
alliances (subscribe/advertise mechanism) [1]. The meta-agent can simulate
the object agent’s decision making process when the object agent receives the
team request within the contract net protocol. In order to reconstruct these,
the meta-agent needs to know the same acquaintance model which would be
used by the object agent. Then the meta-agent produces event belief formulae
and it is able to deduce knowledge about the respective agent. See figure 4.1
for reasoning simulation scheme.
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Fig. 4.1. Reasoning simulation.

The team request to the object agent Ai (query message – requested ser-
vices), the team proposal (inform message - proposed services by the object
agent’s Ai alliance) and the object agent’s Ai acquaintance model are sub-
mitted to the reasoning simulation process. The search algorithm finds all
possible proposed teams by the object agent Ai. Then event belief formulae
can be generated in any case if:

• all possible proposed teams cover any object agent (the requested agent
would accept the requestor as a team leader in gbb),

• all possible proposed teams cover the requested agent Ai (the requested
agent would accept the requestor as a team leader and it would participate
with services in the task location in gbb),
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• no possible proposed team cover the requested agent Ai (the requested
agent does not accept the requestor as a team leader or it would not
participate with services in the task location or both in gbb),

• the requested agent Ai accepts the team counting minimal number of the
team members in possible proposed teams.

We suppose that the meta-agent is present in the community before any
planning phase of the system. The condition is satisfiable in collaborative
environment. The object agents adopt their decision making algorithm with
respect to unsuccessful attempts to allocate a team. See an example 3:

Example 3 Agent’s adaptive behavior.

If the object agent refuses the task proposed by the team leader within the team
allocation request then the team leader will not try to form the team defined in
previous task in the location define in the task again.

We can use the reasoning simulation for generation of event belief formulae
about the previous task rejections, although the meta-agent has lost some
planning actions. The meta-agent can find the object agents which have not
been included in possible proposed teams but they have services not covered
by the possible proposed teams. For technical and formal specification of the
reasoning simulation process see Appendix B.

4.2 Deduction

Prior to discussing the meta-reasoning application, let us give a brief account
on the selected theorem proving techniques available.

Theorem proving and automated reasoning covers an important part of
the traditional symbolic artificial intelligence, where the essence of building
artificially intelligent systems is rooted in manipulation with the symbolic
representation of the environment – the object level multi-agent system, in
our case. The valid facts about the object agents are represented by means of
logical formulae and syntactic manipulation with these formulae is given by
the rules of logical deduction.

Resolution Principle

Probably the most popular calculus used in the implementation of reasoning
programs is based on the resolution principle [20]. All the logical formulae, that
describe the model modelt(θ), are supposed to be encoded as a conjunction
of clauses, where each is a disjunction of literals – CNF (conjunctive normal
form). The negation of the general closure of the goal hypothesis that is about
to be proved is then appended to the model. Such a theory undergoes the
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process of resolution. When resolving the theory the clauses are put together
so that new true clauses get constructed (for instance: from (ψ ∨ ϕ) (¬ψ ∨ ρ)
is constructed (ϕ ∨ ρ)) with the ultimate goal to construct the empty clause
representing the contradiction. Had there been the contradiction found, the
goal hypothesis is proved. Classical rules of mathematical logics such as modus
ponens, de-Morgan rules or unification are part of the resolution process. The
unification process [20] determines a set of possible substitutions of unbound
variables when resolving clauses.

Binary Resolution

The binary resolution is a basic resolution rule, which from the two resolvents
generates a new resolvent (see [21]). The resolution step is performed over
positive literal placed in the first resolvent and negative literal placed in the
second resolvent provided that they can be unified. There are number of reso-
lution rules, e.g. UR-resolution [21] applies on selected resolvent step by step
several unit clauses with an attempt to generate a new unit clause. Hyperres-
olution [22] combines several resolution steps with an attempt to reduce the
number of generated resolvents.

Searching Strategies

Selection of the appropriate searching strategy (for selecting resolvents to be
expanded) is an important aspect for the success of the theorem proving pro-
cess. It determines which clauses to make ready for the state-space expansion
via generation of the new clauses due to the resolution prinicple. Searching
strategy controls the whole of proving process. The searching strategies in
theorem proving are similar to the searching strategies used in problem solv-
ing algorithms [23]. Let us mention the following searching strategies. The
breadth first searching strategy generates first the resolvents with derivation
depth equal to one, then equal to 2 and so on. The linear resolution [24]
always resolves a clause with the most recently derived resolvent.

Set of Support Strategy: For reasons explained below we have favored
the set of support strategy [25], that is one of the most powerful resolution
strategies. It tries to find a inconsistency in the set of axioms from the in-
consistency justification. The resolvent is generated if at least one parent is
supported by the goal hypothesis.

There are several heuristic ways how the resolution process may be opti-
mized. We have made a good use of the following:

• Subsumption: A clause C subsumes a clause D if and only if there is a
substitution σ such that C σ ⊆ D. D is called a subsumed clause [26]. The
subsumption process reduces the space of possible resolvents by removing
more specific clauses (like D) if there is a more general clause present in
the theory (like C). The forward subsumption process attempts to refute a



4.2 Deduction 31

new resolvent with respect to already generated resolvents. The backward
subsumption process tries to make already generated resolvents as non-
available for inference process with respect to the new generated resolvent.

• Model Elimination: This variation of the resolution strategy [27] intro-
duces instead of clauses literal lists (chains) as basic reasoning entities.
We have literal lists of two types: A-literal and B-literal. The bracketed A-
literals are all present eliminated literals, B-literals are these, which have
to be eliminated in order to full eliminate A-literal. The expansion pro-
cess based on resolution principle expands the rightmost A-literal with the
candidates. The reduction process eliminates A,B-literals from the chain
under specific conditions. Model elimination can remove a sentence by
showing that it is false in some model of the axioms (see below). You can
find several theorem provers based on this technology (METHEOR [28],
SETHEO [29]).

The deletion strategy is the deletion of any tautology and any subsumed
clause whenever possible. As we have to worry about computational efficiency
in automated reasoning non-complete strategies have to be considered. The
unit resolution and the input resolution [20] are two refinements of the linear
resolution. The unit resolution is restricted to clauses where at least one parent
is unit clause. The input resolution is restricted to clauses where at least one
parent is from the input set of the axioms.

In the following, we will study the automated reasoning and theorem prov-
ing operation performed within the revisetime the inspecttime and applica-
tion of the concepts lemmatizing a caching within the theorem proving.

4.2.1 Automated Reasoning in Revision Time

We have experimented with different model revision operators, all based on
the suggested novel heuristic strategy – referred to as shortening strategy. This
strategy generates a new clause only if the length of the new clause (here the
length equals to the number of the symbols in the clause) is smaller than
one of its parents clauses. We have used the strategy within the community
revision phase only.

The computational process in the revision time is based on a combination
of the shortening strategy (implementing the ]S , ]min ⊂ ]S ⊂ ]max) and
simple appending the event belief formula to the model (implementing the
]min). We will refer to this process as ]N operator, where N determines the
amount of clauses in the initial model suggested to the operation ]S (see
eqn. 4.2). We prefer the ]S community revision operate to the ]max abstract
community revision operator with respect to the number of generated clauses
within the revisetime and to an attempt to deduce the unit clauses. ]S

operator is not a full equivalent substitution of the ]max operator, however
the shortening strategy reflects the behavior of ]max operator. Forward and
backward subsumption techniques [26] are included within the community
revision process.
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The operator ]N has been implemented as follows. Let us split the initial
model into two disjunctive parts, denoted as modelmin

0 (θ) and modelS0 (θ):

∀ϕ ∈ model0(θ) : ϕ ∈ modelmin
0 (θ) xor ϕ ∈ modelS0 (θ). (4.1)

The operation ]min is applied on the first part of the model modelmin
t (θ)

and the operation ]S is applied on the second part of the initial model
modelSt (θ), formally:

[modelmin
t (θ) ]min eventt] ∪ [modelSt (θ) ]S eventt] → modelt+1(θ) (4.2)

Let us briefly describe creation of modelS0 (θ). It is practically impossible
to use the entire initial model for the ]S operation (modelS0 (θ) = model0(θ))
because then the revisetime would become the bottleneck of the whole meta-
reasoning process. For the proper partitioning let us assume that

• the set of expected events that can happen in the community (all event
belief formulae) is finite and

• there is a specified cap on the maximal admissible depth of the clause
derivation within the revisetime operation.

All reachable unit clauses (contains neither unit event belief formulae nor
their negation) are found by forward propagation from gbb through all ex-
pected event belief formulae and the shortening strategy (see the program 1
used for reachable unit clauses constitution, program is invoked with these
parameters: gbb converted to CNF form, all expected event belief formulae
and maximal admissible depth of the clause derivation, for definition of SOS
list see section 4.2.3). Required modelS0 (θ) is constituted by backward propa-
gation from all reachable unit clauses. It consists of the parent clauses of all
reachable unit clauses from gbb. Then modelS0 (θ) is copied to abb0(θ). The
process is illustrated by example 4.

The parameter N specifies the maximal admissible depth of the clause
derivation within the revisetime and then the community revision operator
]N . It determines also the size of the modelS0 (θ). It controls meta-reasoning’s
complexity within the revisetime. With increasing admissible depth of the
clause derivation within the revisetime there is increased complexity of the
community revision process.

In realistic examples, we may hardly ever enumerate all possible occur-
rences that may happen in the object level communities. Even if this is possi-
ble, we have to face the scalability problem. With an increasing complexity of
the community, the partitioning problem is really hard to be solved. However,
we must bear in mind that this computational process is to be carried out
only in the inittime and does not bring much of a computational burden in
the revisetime.

There are other ways how the modelS0 (θ) can be created. We experimented
with the random setting that includes the formulae from which it is not pos-
sible to deduce any unit clauses. It is not effective for the reasoning process
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Example 4 Initial model splitting.

Let us demonstrate above described process on a simple example. Ground belief
base gbb is defined (variables are in uppercase, constants in lowercase):

1. ∀X∀Y ∀Z accept(X,Y, Z) ⇔ accept leader(X,Y ) ∧ accept city(X,Z),
2. ∀X∀Y ¬accept leader(X,Y ) ∧ proposal(Y,X) ⇒ refuse proposal(X,Y,M).

We transform background knowledge to CNF form:

1. ¬accept(X,Y, Z) ∨ accept leader(X,Y ),
2. ¬accept(X,Y, Z) ∨ accept city(X,Z),
3. accept(X,Y, Z) ∨ ¬accept leader(X,Y ) ∨ ¬accept city(X,Z),
4. accept leader(X,Y ) ∨ ¬proposal(Y,X) ∨ refuse proposal(X,Y,M),

There are three expected event belief formulae accept(X,Y, Z), ¬accept(X,Y, Z)
and proposal(Y,X). Be aware of the fact that the events accept(X,Y, Z) and
¬accept(X,Y, Z) make the theory inconsistent. There can appear empty clauses
within the simulation process. We filter them out. Maximal admissible depth of
the clause derivation within the revisetime equals to 2. There are four reach-
able unit clauses: accept leader(X,Y ), ¬accept leader(X,Y ), accept city(X,Z) and
¬accept city(X,Z). The literal refuse proposal is reachable with maximal admis-
sible depth equals to 3. We use backward propagation in order to find parents of
reachable unit clauses, then we can define:

modelS0 (m) = { ¬accept(X,Y, Z) ∨ accept leader(X,Y ),
¬accept(X,Y, Z) ∨ accept city(X,Z),
accept(X,Y, Z) ∨ ¬accept leader(X,Y ) ∨ ¬accept city(X,Z)},

modelmin
0 (m) = { accept leader(X,Y ) ∨ ¬proposal(Y,X)

∨refuse proposal(X,Y,M)}.

based on the shortening strategy. We suppose that all formulae from modelS0 (θ)
are always revised within the revisetime. It is possible to change it with re-
spect to ebbt(θ) in order to improve efficiency of the community revision phase
and then whole meta-reasoning process. The ways how to set modelS0 (θ) and
how to change modelS0 (θ) with respect to ebbt(θ) will be in scope of our further
research.

Let us denote event lemmast(θ) as a set of all unit clauses deduced within
the revisetime until time t. They are called as event lemmas. They will be
used for the reduction of the time responses within the inspecttime.

See program description n.1 when a new eventt appears. The program re-
ceives an actual content of assumed belief base abbt−1(θ) (denoted as abb{t-1}
in the program description), the new event eventt (denoted as event{t}) and
maximal admissible depth of the clause derivation. New content of assumed
belief base abbt(θ) (denoted as abb{t}) and new event lemmas (denoted as
lemmas{t}) are produced. Forward and backward subsumption are included.
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Program 1 Community revision process.

community-revision (abb{t-1}, event{t}, MAX_ADMISSIBLE_DEPTH)

{

temp_ABB = abb{t-1};

SOS = move_to_SOS(convert_to_CNF(event{t}));

temp_ABB = move_to_ABB(SOS);

while (SOS!=NULL) do

{

actual_clause = choose_the_first(SOS);

SOS = remove_from_SOS(actual_clause);

new_clauses = generate_new_clauses(actual_clause, temp_ABB);

for (actual_new_clause in new_clauses) do

{

if ((actual_new_clause != NULL)

and not_tautology(actual_new_clause)

and not_subsumed(temp_ABB, actual_new_clause)

and correct_with_parents(actual_new_clause)

)

if (depth(actual_new_clause) < MAX_ADMISSIBLE_DEPTH)

SOS = move_to_SOS(actual_new_clause);

temp_ABB = move_to_ABB(actual_new_clause);

if unit_clause?(actual_new_clause)

temp_lemmas = move_to_lemmas(actual_new_clause);

for clause_in_ABB in temp_ABB do

{

if subsumes(actual_new_clause, clause_in_ABB)

{

temp_ABB = remove(clause_in_ABB, temp_ABB);

if (temp_ABB in SOS)

SOS = remove(clause_in_ABB, SOS);

}

}

}

}

abb{t} = temp_ABB;

lemmas{t} = temp_lemmas;

}

The function move_to_SOS appends either a clause or a set of clauses to
the SOS list. Other list functions append either a clause or a set of clauses
to the specific list only. The function generate_new_clauses generates new
clauses using resolution over all literals in actual clause and over all clauses
(literals) in the temp_ABB list. We process the new clause only if:

• the new clause is not empty clause (we do not suppose no-monotonicity in
the revisetime, see modelS0 (θ) constitution, where can appear inconsistent
events within searching for all reachable lemmas),
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• the new clause is not a tautology,
• the new clause is not subsumed by another one in temp_ABB – forward

subsumption process and
• the length of the new clauses is lower than any parent clause, the length

of the clause is here understood as a number of the symbols in the clause.

There is backward subsumption process where we try whether the clauses in
temp_ABB are subsumed by the new clause.

We proposed in [2] that the community revision process should be close to
]min than to ]max. The reason is an exponential complexity of amount of new
deduced knowledge when the event belief formula appears. We have experi-
mented with admissible depth of the clause derivation within the revisetime.

4.2.2 Automated Reasoning in Inspection Time

The community inspection operator # is implemented in three steps as fol-
lows:
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Example 5 Community revision process.

Let us continue in example 4. Coming sequential event belief formulae are:

ebb3(θ) =
event1 = ¬accept(”Country − C Army”, ”Country − C Police”,

”Suffer Town”),
event2 = accept(”Country − C Army”, ”Country −A Army”,

”Suffer Town”),
event3 = proposal(”Country − C Police”, ”Country − C Army”)}.

Let us simulate the community revision process and let us observe contents of the
sets abbt(θ) and event lemmast(θ):

t = 0
abb0(θ) = modelS0 (θ),
event lemmas0(θ) = ∅,

t = 1
event1 =

¬accept(”Country − C Army”, ”Country − C Police”, ”Suffer Town”)
abb1(θ) = modelS0 (θ)∪

{¬accept leader(”Country − C Army”, ”Country − C Police”)
∨¬accept city(”Country − C Army”, ”Suffer Town”)

}
event lemmas1(θ) = ∅,

t = 2
event2 =
accept(”Country − C Army”, ”Country −A Army”, ”Suffer Town”)

abb2(θ) = modelS0 (θ)∪
{accept leader(”Country − C Army”, ”Country −A Army”),
accept city(”Country − C Army”, ”Suffer Town”),
¬accept leader(”Country − C Army”, ”Country − C Police”)

}

,

clause:
¬accept leader(”Country − C Army”, ”Country − C Police”)
∨¬accept city(”Country − C Army”, ”Suffer Town”)

has been removed by backward subsumption process,
event lemmas2(θ) =

{
accept leader(”Country − C Army”, ”Country −A Army”),
accept city(”Country − C Army”, ”Suffer Town”),
¬accept leader(”Country − C Army”, ”Country − C Police”)

}
t = 3

event3 = proposal(”Country −C Police”, ”Country −C Army”), without
the impact to the observed sets:
abb3(θ) = abb2(θ),
event lemmas3(θ) = event lemmas2(θ).
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1. if goalt ∈ modelt(θ) the reply is yes and finish, otherwise continue in step
2,

2. if modelt(θ) ` goalt the reply is yes and finish, otherwise continue in step
3,

3. the reply is no.

We will focus on the inspection time supported by ]min community revision
operator and supported by ]N community revision operator. Both require
theorem proving methods in the inspecttime.

4.2.3 Community Model Inspection

We used the resolution principle, exactly binary resolution for our experiments
with theorem proving and tools related to it. We assume that modelt(θ) =
ebbt(θ)∪ gbb. If the goalt formula is not directly contained in the modelt(θ),
then the problem becomes that of provability: modelt(θ) ` goalt. The actual
model modelt(θ) is kept in CNF form. The user’s query goal is converted to
the CNF form too. The # operator is implemented by finding inconsistencies
in modelt(θ) ∪ ¬goalt.

We studied different searching algorithms and automated reasoning tech-
niques for implementation of the community inspection process in our domain.
We experimented with a combination of several searching strategies too. Lem-
matizing, caching and deletion with lemmas techniques are used.

Searching Strategy

Our experiments confirm that the set of support strategy works best for our
problem [25]. Theorem prover based on set of support strategy can be found
in OTTER theorem prover [21]. Forward and backward subsumption can be
included. As most of the searching algorithms, we store following lists within
the searching algorithm:

• usable – this list contains clauses that are available to make inferences,
• sos – clauses in list sos (set of support) are not available to make infer-

ences, they are waiting to participate in the search via expansion process
due to the resolution principle, it is equivalent to OPEN list used in problem
solving searching algorithms,

• close – clauses prepared for forward subsumption process, they could
subsume a new generated clause, it is equivalent to CLOSE list used in
problem solving searching algorithms.

See program 2 for basic searching algorithm description.
The searching strategy is similar to A∗ algorithm [23]. The function

move_to_USABLE appends either a clause or a set of clauses to the USABLE

list and it makes available every literal in the clause for inference. Other list
functions append either a clause or a set of clauses to the specific list only. The
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Program 2 Searching algorithm.

search1 (query, theory)

{

USABLE = move_to_USABLE(theory);

SOS = move_to_SOS(convert_to_CNF(not query));

CLOSE = append(USABLE, SOS);

evaluate_clauses(SOS);

while (SOS!=NULL) do

{

actual_clause = choose_the_cheapest(SOS);

SOS = remove_from_SOS(actual_clause);

if (actual_clause == NIL) return T;

new_clauses = generate_new_clauses(actual_clause, USABLE);

for (actual_new_clause in new_clauses) do

{

if (not_tautology(actual_new_clause)

and not_subsumed(CLOSE, actual_new_clause)

)

evaluate_clause(clause);

SOS = move_to_SOS(actual_new_clause);

CLOSE = move_to_CLOSE(actual_new_clause);

}

USABLE = move_to_USABLE(actual_clause);

}

}

functions evaluate_clauses and evaluate_clause assign to clauses, respec-
tively to clause the objective function, which estimates number of operations
until empty clause will be reached. We prefer easy estimation – the number
of literals. The function generate_new_clauses generates new clauses using
resolution over all literals in actual clause and over all clauses (literals) in the
USABLE list. The CLOSE list enables forward subsumption process. Backward
subsumption process is not included in the program description.

Model Elimination

We applied model elimination features within the set of support searching
strategy. Expansion process via resolution principle is performed over only
one literal – the rightmost literal in the expanded clause. We will try to
eliminate this the rightmost literal – it becomes the newest A-literal. The
rest of the second resolvent (not expanded clause) is appended to the rest of
expanded clause from the right – there are new B-literals. The new clause
inherits from the parent expanded clause list of their A-literals (literals with
their positions). Later, when the new clause is expanded, there is set up the
newest A-literal. If there is no B-literal behind any A-literal, the A-literal
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is eliminated and removed. See example 6 for several resolution steps. See
program 3 for the new searching algorithm description:

Program 3 Searching algorithm.

search2 (query, theory)

{

USABLE = move_to_USABLE(theory);

SOS = move_to_SOS(convert_to_CNF(not query));

CLOSE = append(USABLE, SOS);

evaluate_clauses(SOS);

while (SOS!=NULL) do

{

actual_clause = choose_the_cheapest(SOS);

SOS = remove_from_SOS(actual_clause);

if (actual_clause == NIL) return T;

CLOSE = move_to_CLOSE(actual_clause);

new_clauses = generate_new_clauses_ME(actual_clause, USABLE);

for (actual_new_clause in new_clauses) do

{

if (not_tautology(actual_new_clause)

and not_subsumed(CLOSE, actual_new_clause)

)

evaluate_clause(clause);

SOS = move_to_SOS(actual_new_clause);

CLOSE = move_to_CLOSE(actual_new_clause);

}

USABLE = move_to_USABLE_ME(actual_clause);

}

}

The function generate_new_clauses generates new clauses using reso-
lution over the rightmost literal in actual clause and over all clauses in the
USABLE list. Be aware of the fact that the clauses in the USABLE list, which
are supported by the query they have only one literal available for the infer-
ences – it is the newest A-literal. The function move_to_USABLE_ME appends
either a clause or a set of clauses to the USABLE list and it makes available the
rightmost literal in clause for inference only.

We have designed and implemented above described approach because
when the clause is expanded over all its literals then too many new clauses are
generated. The new clauses differ in two literals (due to the binary resolution)
and unifications only. We suppose that by the model elimination support
we will improve inspection phase due to the elimination of ”similar” clauses
generation.

We were inspired by [30] and we improved above the described strategy
in such way that the newest A-literal need not to be the rightmost literal (let
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us denote it as literal preference). The newest A-literal is chosen by heuris-
tic knowledge. We experimented with several evaluation functions for choos-
ing the newest A-literal. With respect to reduction of the searched space by
caching (see below) and by reduction of the number of resolution candidates
we prefer this heuristic: the ratio between the amount of variables and the
amount of constants – we prefer the literal with the lowest ratio. The chance
that the newest A-literal will be subsumed by more general lemma increases
with decreasing ratio between the amount of variables and the amount of con-
stants. The newest A-literal is chosen from all B-literals behind either the last
A-literal or from all literals if no A-literal presents in the clause. The newest
A-literal is removed from the clause and then appended to the end of the
clause. See an example 6:

See program 4 for the improved searching algorithm.
The function set_the_newest_A_literal sets up the newest A-literal and

transforms actual clause so that the newest A-literal is the last literal in the
clause.

We suppose that by choosing the newest A-literal from all B-literals behind
the last A-literal:

• we will improve the efficiency of the inspection phase due to the ability to
control searching algorithm via the possibility to choose the new eliminated
literal and

• we will improve the efficiency of the inspection phase due to the more
frequent using of caching (see below).

Proof Lemmas

Besides the event lemmast(θ) that are deduced unit clauses formulated by the
] operators in the revisetime, let us introduce proof lemmast(θ) as a set of
unit clauses (below proof lemmas) generated by the # during the inspecttime
(theorem proving process) as a side effect. We are able to generate proof
lemmas within the proofs due to the fact that we have combined searching
strategy with model elimination method. See [31] for proof lemmas generation
when only model elimination method is used.

Let us suppose now that the newest A-literal in some clause is eliminated.
We could execute a new community inspection process:

modelt(θ) ` A − literal. (4.3)

We can say that:
modelt(θ) |= A − literal, (4.4)

and we can eliminate the newest A-literal if the new community inspection
process succeeds. We cannot apply this approach with respect to two reasons:

• the community inspection process suggests only one solution if it succeeds
then the original community inspection process, which invokes next one in
order to eliminate the newest A-literal, would not be complete and
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Example 6 Model elimination.

1. let us expand the clause:
accept(”Country − C Army”, ”Country − C Police”, Z)∨
¬accept leader(”Country − C Army”, ”Country − C Police”)

with clause:
accept leader(X,Y ) ∨ proposal(Y,X) ∨ refuse proposal(X,Y,M),

there is no A-literal and two B-literals in clause:
accept(”Country − C Army”, ”Country − C Police”, Z)∨
¬accept leader(”Country − C Army”, ”Country − C Police”),

the newest A-literal is set up:
¬accept leader(”Country − C Army”, ”Country − C Police”)

because the ratio between the amount of variables and amount of constants is
lower than in the case of literal:
accept(”Country − C Army”, ”Country − C Police”, Z),

2. a new clause is obtained:
accept(”Country − C Army”, ”Country − C Police”, Z)
[∨¬accept leader(”Country − C Army”, ”Country − C Police”)]
∨proposal(”Country − C Police”, ”Country − C Army”)
∨refuse proposal(”Country − C Army”, ”Country − C Police”,M),

one A-literal has been inherited from the parent clause (bracketed literal),
there are three B-literals, we choose the newest A-literal between two
B-literals behind the last A-literal, the newest A-literal is:
proposal(”Country − C Police”, ”Country − C Army”),

the clause is repaired to the form:
accept(”Country − C Army”, ”Country − C Police”, Z)
[∨¬accept leader(”Country − C Army”, ”Country − C Police”)]
∨refuse proposal(”Country − C Army”, ”Country − C Police”,M)
∨proposal(”Country − C Police”, ”Country − C Army”),

3. let us expand the clause:
accept(”Country − C Army”, ”Country − C Police”, Z)
[∨¬accept leader(”Country − C Army”, ”Country − C Police”)]
∨refuse proposal(”Country − C Army”, ”Country − C Police”,M)
∨proposal(”Country − C Police”, ”Country − C Army”)

with clause:
¬proposal(”Country − C Police”, ”Country − C Army”),

4. a new clause is obtained:
accept(”Country − C Army”, ”Country − C Police”, Z)
[∨¬accept leader(”Country − C Army”, ”Country − C Police”)]
∨refuse proposal(”Country − C Army”, ”Country − C Police”,M),
[∨proposal(”Country − C Police”, ”Country − C Army”)],

there are two A-literals and two B-literals, there is no B-literal behind the last
A-literal, then it is eliminated, the clause is transformed to the form:
accept(”Country − C Army”, ”Country − C Police”, Z)

[∨¬accept leader(”Country − C Army”, ”Country − C Police”)]
∨refuse proposal(”Country − C Army”, ”Country − C Police”,M),

the newest A-literal is (there is no choice):
refuse proposal(”Country − C Army”, ”Country − C Police”,M),
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Program 4 Searching algorithm.

search3 (query, theory)

{

USABLE = move_to_USABLE(theory);

SOS = move_to_SOS(convert_to_CNF(not query));

CLOSE = append(USABLE, SOS);

evaluate_clauses(SOS);

while (SOS!=NULL) do

{

actual_clause = choose_the_cheapest(SOS);

SOS = remove_from_SOS(actual_clause);

if (actual_clause == NIL) return T;

CLOSE = move_to_CLOSE(actual_clause);

set_the_newest_A_literal(actual_clause);

new_clauses = generate_new_clauses_ME(actual_clause, USABLE);

for (actual_new_clause in new_clauses) do

{

if (not_tautology(actual_new_clause)

and not_subsumed(CLOSE, actual_new_clause)

)

evaluate_clause(clause);

SOS = move_to_SOS(actual_new_clause);

CLOSE = move_to_CLOSE(actual_new_clause);

}

USABLE = move_to_USABLE_ME(actual_clause);

}

}

• whole the community inspection process would not be such efficient with
respect to the redundancy of derived clauses due to less efficient subsump-
tion process.

However, we generate proof lemmas under conditions resulting from the re-
quirements for the isolation of the community revision processes in above
described approach. The proof lemma is generated when any A-literal is elim-
inated and if:

1. only one parent of the clauses generated between the clause where the
A-literal has been set and the clause where the A-literal is eliminated, is
supported by goal hypothesis and

2. no B-literal ahead of eliminated A-literal has influenced B-literals behind
eliminated A-literal (some B-literals can be removed from the new clause
because they appear several times in the clause).

A new proof lemma as a new deduced knowledge is true fact in modelt(θ)
(see eqn.4.4). Proof lemmas can be used either:
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• within the same proof where they are generated through technologies as
lemmatizing, caching and deletion with proof lemmas or

• within following proofs.

Lemmatizing and Caching

We were inspired by [32, 31] where iterative deepening search engine has been
supported by caching and lemmatizing. When caching we replace the parts
of the searched state space, when lemmatizing we suggest to the searching
algorithms sub-solutions. We prefer caching to lemmatizing with respect to
knowledge redundancy if lemmatizing is used. We experimented with both
improvement technologies.

Let us suppose now that a lemma is used as a parent to generate a new
clause. Is it caching or lemmatizing? We are able to say whether the lemma
will be used within lemmatizing or chacing according to the expansion over
A-literal. If the lemma subsumes (is more general) than expanded A-literal
then caching is applied otherwise lemmatizing is applied.

We do not consider other candidates if lemma is applied as caching, be-
cause a new clauses is shorter then expanded parent clause and the new clause
subsumes expanded parent clause (no binding has been performed). Lemma-
tizing process [32] brings the knowledge redundancy to the proof which can
result even in deceleration of the theorem proving process. In the worst case,
some clauses are generated two times, but they are reduced immediately by
the subsumption process. These clauses are produced by lemmatizing process.
Our domain, as most of meta-reasoning domains, is characterized by low num-
ber of variables. Subsumption process removes the redundancy in the search
space very early then we prefer the lemmas to other candidates for expansion
process via resolution principle. The process generating the candidates for ex-
pansion process is finished when lemma supporting the caching is found. We
prefer the lemmas supporting lemmatizing to other candidates except these
which supports caching.

We suppose that caching and lemmatizing improve the community inspec-
tion phase and we experimented with it. It does need not to be a true because
it is necessary to consider the fact that there are additional operations for
the proof lemmas generation and the fact of knowledge redundancy. In cases
when the proof lemmas will not be such efficient, the community inspection
process can be slow down.

Deletion with Lemmas

We suggest a novel utilization of the lemmas based on the deletion strategy.
We reduce the space of all clauses by removing these which are subsumed by
any proof lemma. Proof lemmas for deletion of the clauses can be used in two
ways:
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• in backward subsumption process, we try to remove all clauses from USABLE

and SOS lists which are subsumed by a new found proof lemma,
• in forward subsumption process, when a new found proof lemmas is put

into the list CLOSE.

We suppose that deletion supported by proof lemmas will reduce the space
of all clauses and then time responses of the community inspection phase.

4.2.4 Community Model Inspection Supported by ]
N .

We can apply here all techniques described above. Additionally, we generate
lemmas within the revisetime. Let us denote lemmast(θ) as set of all lemmas
deduced within the revisetime and within the proofs:

lemmast(θ) = event lemmast(θ) ∪ proof lemmast(θ). (4.5)

The community model inspection is implemented as a proof as follows:

modelt(θ) ∪ lemmast(θ) ` goalt. (4.6)

We will experiment with the lemmas deduced within the revisetime and with
relation between ] and # operators. We will focus on the amount of deduced
lemmas and their utilization. We suppose that lemmas generated within the
proof are more useful than lemmas deduced within the revisetime, because
they are generated as a result of the user’s query. The chance that proof lemma
will be successfully applied as either caching or lemmatizing is higher than in
the case of event lemma. It is possible that the set lemmast(θ) will be so big
that using of lemmas will have negative impact to the community inspection
phase. The methodologies how to reduce the lemmast(θ) set by identification
of useful lemmas is in the scope of further research.

Our task differs from the classical theorem proving task by the fact, that
we are able to divide the clauses submitted to the theorem proving process
into three disjunctive parts: gbb, ebbt(θ) and lemmast(θ). We found that the
different settings of the CLOSE list used in searching algorithm have different
results. That is why we will experiment with different settings of the searching
algorithm in order to find out the fastest prototype for our domain.

4.3 Induction

One of the biggest problems in implementation of the explicit models is the
representation of all created facts with a possibility to search trough them
quickly, because the space of all facts logically following from the events could
be large and even infinite. One possible solution is to work only with the
implicit representation – representation of hypotheses about the object agent’s
decision making algorithm. Therefore, we are faced with an inverse task to the
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agent’s decision making process described above (section 1.5): Assuming the
knowledge of gbb, identify ψA by observing agent A’s decisions. From now, we
will work with the model containing information only about one object agent,
the model of the whole object-level community can be obtained by composing
these models.

4.3.1 Version Space

During the community model revision phase (revisetime), we can create hy-
potheses ψ∗

A about the agent’s A decision making algorithm ψA . A good way
to manipulate the space of hypotheses is provided by a version space algo-
rithm (VS) [33], where all consistent hypotheses are represented by two sets
containing the most general and the most specific hypotheses.

Our hypothesis ψ∗
A about ψA will be composed of n elementary hypotheses

ψ∗
A

i each deciding about one elementary attribute τ i of the task τ , i = 1, . . . , n:

ψ∗
A(τ) =

[

ψ∗
A

i(τ i)
]n

i=1
, (4.7)

and it will be used as follows:

ψ∗
A(τ) →

{

yes if
∧

i ψ
∗
A

i(τ i) = yes

no otherwise.
(4.8)

This equation is equivalent to:

ψ∗
A(τ) →

{

yes if
∨

i ψ
∗i(τ i) = no,

no otherwise.
(4.9)

where ψ∗i is complementary hypothesis1 to ψ∗i. Therefore, usage of com-
plementary hypotheses enables VS to learn more complex hypothesis about
object agent’s decisions, even if it works only with conjunction of elementary
hypothesis.

Version Space Algorithm Description.

Algorithm VS represents the space of all hypotheses by two sets:

• G – the set of the most general consistent hypotheses and
• S – the set of the most specific consistent hypotheses,

so that all and only those hypotheses, that are more general than some hy-
pothesis in S and more specific than some hypothesis in G are consistent with
processed events. Therefore the model managed by VS algorithm is a pair:

1 A hypothesis ψ∗

1 is complementary to the hypothesis ψ∗

2 if it replies yes when ψ∗

2

replies no and vice versa.
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modelVS = [S,G] (4.10)

The meta-agent uses the VS algorithm in the following manners:

inittime: The initialization of VS algorithm is done by (i) initializing the set
G to contain the most general hypothesis – always responding yes and (ii)
initializing the set S to contain a hypothesis that always responds no.

revisetime: Incoming event (represented by a pair [τt, ψ(τt)] as described in
section 2.4, eqn. 2.12) is processed in as follows:

modelVS
t ] eventt →















Generalize S, Remove G
if ψ(τt) = yes,

Specify G, Remove S
if ψ(τt) = no,

(4.11)

where the operation Generalize S (Specify G) means to generalize
(specify) those hypotheses in the set S (G) that not comply with the
given event event and the operation Remove removes wrong hypotheses
from the given set.
The community revision phase can be stopped in two cases:
• If one of the sets G and S is empty, we end because the given events

were inconsistent.
• If the sets G and S are singleton and identical, we end because we have

found the exact decision rule of the object agent.
inspecttime: The algorithm is predicting the response for a given query

goalt as follows:

modelVS
t # goalt →























yes if all hypotheses in G and S
evaluate the goal

t
to be positive,

no if all hypotheses in G and S
evaluate the goal

t
to be negative,

unsure otherwise.
(4.12)

Studying positive and negative evaluations of the hypotheses allows also
to count the probabilities of unsure queries.

4.3.2 Inductive Logic Programming

This section deals with meta-reasoning based on Inductive Logic Programming
(ILP) [34]. First, we briefly explain the ILP background and the first-order
logic representation of agent’s decision making. We then describe the basic
variant of ILP meta-reasoning operations and conclude with a few remarks
regarding ILP meta-reasoning reliability, efficiency and its possible alternative
implementation.

The task of creating hypotheses about agent’s decision rule can be accom-
plished by means of an ILP system, whose input is actual object agent’s model
modelILP

t in the time t:
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modelILP
t = gbb ∪ ebbt (4.13)

The event belief base ebbt contains history of A’s decisions up to the instant t.
Each item in the history is a pair [τt, ψ(τt)] (described in section 2.4, eqn. 2.12).

The output of the ILP algorithm is then a hypothesis ψ∗
A , which approxi-

mates the unknown correct ψA . Once, we have the hypothesis ψ∗
A , we can use

it to predict A’s decision during model inspection. The hypothesis is expressed
in the programming language Prolog.

ILP Meta-Reasoning Operations

This section describes the basic variant of ILP meta-reasoning operations with
respect to the three meta-reasoning phases. For discussion and the description
of alternative approaches, see the end of this section.

ILP algorithm is applied to create a hypothesis. In ILP terminology, it is
called hypothesis induction. Given A’s decision history (stored in ebb) and
background belief base gbb, an ILP system is employed to induce a hypothesis
ψ∗

A about ψA the A’s decision making algorithm. This is ensured by an ILP

system Aleph2[35]. This induction can be carried out in the revisetime, in
the inspecttime or in the idle time after new event comes.

inittime

Agent A’s decision history is initialized by setting:

modelILP
0 = gbb (4.14)

revisetime

In its basic form, the ILP ] operator consists solely of updating A’s decision
history with a newly observed decision, i.e.:

modelILP
t ] eventt = modelILP

t ∪ {[τt, ψ(τt)]} (4.15)

This revision creates the model as defined in equation 4.13. The ILP ] opera-
tor is equivalent to the community revision operator ]min defined in eqn. 2.7.

inspecttime

Before the modelILP
t can reply given query, it is necessary to induce a hypoth-

esis ψ∗
A :

ψ∗
A = Aleph

(

modelILP
t

)

. (4.16)

The induced hypothesis ψ∗
A is used to answer the query goalt by perform-

ing a resolution operation. Specifically,

2 http://web.comlab.ox.ac.uk/oucl/research/areas/machlearn/Aleph
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modelILP
t # goalt →















yes if ψ∗
A ` accept(goalt),

no if the attempt to prove accept(goalt)
ends by finite failure,

unsure otherwise.
(4.17)

Important Remarks

Reliability of ILP Predictions

Regarding predictions obtained via the meta-reasoning process, there is one
significant difference between ILP and Version Space (VS) 4.3.1 algorithm.
Any ILP algorithm searches for complete and consistent generalization of the
seen examples. This means that the ILP meta-reasoning can return wrong
predictions for goal queries which have not been so far observed (and which
thus have not been used in the revisetime).

Possible incorrect predictions on previously unseen event belief formulae3

is an inherent property of all systems performing process of the generalization
of past event belief formulae.

Reusability of Induced Hypotheses

The induced hypothesis accept can be reused for all subsequent queries con-
cerning A’s decision making as long as there have not been any new event
belief formulae. If new event belief formula is inconsistent with the existing
ψ∗

A hypothesis, the hypothesis induction operation has to be re-executed, i.e.
the completely new hypothesis has to be generated from the gbb ∪ ebbt.

Implementation of ILP Meta-Reasoning revisetime versus inspecttime
Operations

The above given remark leads to an important question regarding how the core
ILP meta-reasoning operations, i.e., hypothesis induction and query resolu-
tion should be distributed between the revisetime and the inspecttime. ILP
algorithms are considered to be complex and since demanding. That is why
ILP systems have often problems with the respond time, which seems too long
for specific applications. Recently, there were suggested some heuristics [35]
which can improve this situation. In the current implementation, both oper-
ations are executed in the inspecttime and the revisetime operation solely
updates object agent’s decision history.

Our experiments in the considered domain proved that here call of ILP
algorithm causes no time-delay. Consequently, an alternative solution is pos-
sible. The hypothesis induction operation could be moved to the revisetime,

3 In contrast to the predictions on testing examples, the hypothesis induced by an
ILP algorithm is always consistent with the training set, unless the training set
is itself inconsistent.
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i.e., the ψ∗
A hypothesis would be automatically re-induced each time a new

event belief formula about the object agent’s decision is observed. In this case,
only the query resolution operation is left for the inspecttime. Since the reso-
lution is generally much faster than the induction, such solution would result in
a faster model inspection. On the other hand, the overall amount of computa-
tion carried out when adopting this solution can be (substantially) higher than
using the original one. This is because the hypothesis inductionstep would be
performed even if not utilized by a pending inspection query.

Batch versus Incremental Induction

The hypothesis induction operation can be realized either by a batch or by an
incremental ILP system. Batch ILP systems induce the theory only after they
have all training set at their disposal. Incremental ILP systems, also called
theory revision systems [36], induce the theory in an example-by-example
manner, each time updating the so far induced theory so that it reflects the
newly processed event belief formula. In a broader perspective, the batch
and incremental induction corresponds to the strong-update and weak-update
strategies, respectively.

Weak update strategy is generally preferred as it is supposed to require less
computing. In the case of ILP, the situation is reversed. Since the mid 1990s,
the interest of the ILP research community has moved away from theory-
revision systems.4 We used batch ILP systems for our ILP meta-reasoning
implementation.

4 Which also means that there is lack of reliable first-order theory revision systems,
which we could employ in our implementation.
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Experiments

We performed a large number of experiments in order to verify used tech-
nologies and algorithms. The most interesting graphs are presented in the
following section.

First we will compare how successfully the three reasoning technologies –
theorem proving, version space machine learning and inductive logic program-
ming – can predict community behavior 5.2. We have primarily paid attention
to deductive reasoning, therefore the major part of the experiments will be
devoted to describing properties of the suggested theorem proving mechanism
that we have implemented.

We will compare behavior of different community revision operators in
deductive meta-reasoning. We will try to illustrate how much computation is
it useful and rational (in terms of calculative rationality) to carry out in the
community revision and inspection phase respectively (in other words, how
close to ]max is it sensible to get).

In the following section we will illustrate the role of the domain knowledge
in the inspection time.

After that we will present a series of four measurement that will illus-
trate the behavior of the reasoning improvements that we have designed and
explained in sections 4.2.3.

The experiments will conclude with the comparison of our deduction meta-
reasoning methods and the known and cited Otter theorem prover.

5.1 Description of Experiments

Let us describe the language used by the automated reasoning part of the
meta-agent. We use the first order logic without equality and function symbols.
We utilize the relation operator <. The ground belief base gbb consists of
20 formulae which are transformed to 249 clauses. See automated-reasoning-
gbb.txt file for gbb.
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See theorem-proving-queries.txt file for definition of 21 queries used for
most reported experiments. The only exception is the experiment in sec-
tion 5.2, for experiment description see 5.2.

We defined the set of the disasters sent to the multi-agent system CPlanT
in order to obtain the event belief formulae for our experiments. See theorem-
proving-events.txt file for the event belief formulae.

All experiments have been performed with events stored in theorem-
proving-events.txt. Only experiment with simulated reasoning and abilities
of the meta-reasoning methods to predict the object agent’s decision making
has been performed with event belief formulae stored in prediction-events.txt.

5.2 Prediction Capabilities of Investigated Methods

We experimented with an ability to predict the object agent’s decision making.
We defined a specific set of the disasters sent to the CPlanT multi-agent
system and we tried to predict if the object agent would either accept or refuse
the team allocation request. First we try to predict the event if the event is
equivalent to the the team allocation request. Then the event is suggested to
the meta-reasoning methods.

See graph 5.1 for the success of the prediction with respect to the meta-
reasoning methods:

• automated reasoning and theorem proving (see 4.2),
• automated reasoning and theorem proving supported by event belief for-

mulae generated by the reasoning simulation (see 4.1 and 4.2),
• machine learning, version space algorithm (see 4.3.1),
• machine learning, inductive logic programming (see 4.3.2).

The machine learning methods have not been supported by event belief formu-
lae generated by the reasoning simulation. To evaluate the results we have per-
formed revision and inspection of 160 sequential events. Percentage of correct
predictions is counted during last 20 events. See graph 5.2 for the comparison
of the meta-reasoning methods in prediction.

Reasoning simulation improves the ability to predict the object agent’s
decision making due to the generation of more knowledge about the object
agents. The inductive logic programming method seems to reach the best
results due to the ability to generalize knowledge via the induction operation.
On the other hand there ILP gave five incorrect predictions. There are no
incorrect predictions if we use the automated reasoning method based on the
deduction operation. The version space method does not generate incorrect
predictions although the induction operation is used here, because it stores
all possible hypothesis consistent with the previous events. The results of
the automated reasoning (without the support of the reasoning simulation)
and version space methods are similar. The version space method uses the
same background knowledge as the automated reasoning method. While the
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Fig. 5.1. Success of Prediction.

automated reasoning method uses background knowledge in explicit form,
version space method uses background knowledge in implicit form.

The success of the prediction can decrease although in global measurement
it increases. The prediction success of specific event depends on previous event,
namely on its similarity to the past events. With an amount of new deduced
knowledge from the event it decreases the probability that we will be able to
predict the event.

In future we intend to combine the methods. The methods based on deduc-
tion and version space algorithm give correct predictions. We utilize inductive
methods if no deductive method gives the prediction. We will risk incorrect
prediction in some cases to no prediction.
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Fig. 5.2. Comparison of Meta-reasoning Methods in Prediction.

5.3 Community Revision Operators

We studied the impact of the community revision operator to the inspecttime.
We experimented with different community revision operators defined via the
maximal admissible depth of the clause derivation within the revisetime oper-
ation (see section 4.2.1). See graph 5.3 for the number of the generated clauses
within the inspecttime. We accumulated 21 results of the proofs supported
by the event lemmas generated within the revisetime. The proofs have been
supported by the technologies caching, lemmatizing and deletion with lemmas.
There are the community revision operators (there is 249 clauses in gbb):

• CRO0 - ]min community revision operator,
• CRO2 - ]7 community revision operator, the maximal admissible depth

of the clause derivation equals to 2, (see section 4.2.1),
• CRO3 - ]73 community revision operator, the maximal admissible depth

of the clause derivation equals to 3,
• CRO4 - ]90 community revision operator, the maximal admissible depth

of the clause derivation equals to 4,
• CRO5 - ]235 community revision operator, the maximal admissible depth

of the clause derivation equals to 5.

The number of the generated states decreases with an amount of the
clauses revised within the revisetime due to more knowledge about the ob-
ject agents. This additional knowledge is generated within the revisetime.
See graph 5.4 for the number of the generated clauses within the revisetime.
The number of the generated states increases with an amount of the clauses
revised within the revisetime.
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Fig. 5.3. Number of Generated Clauses within the inspecttime.
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Fig. 5.4. Number of Generated Clauses within the revisetime.

Let us consider the number of the generated clauses within the inspecttime
and the revisetime. We sum up the number of the generated clauses per proof
within the inspecttime and the number of the generated clauses within the
revisetime. We are interested if the deduction of new knowledge within the
revisetime is beneficial for the number of the generated clauses within only
one proof in the inspecttime. See graph 5.5 for the result. The number of
the generated clauses decreases with an amount of the clauses revised within
the revisetime. This is due to the shortening strategy (see section 4.2.1)
applied within the revisetime. The shortening strategy prevents creation of
huge amount of the generated clauses within the revisetime via the strategy
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to generate clauses shorter than one of their parents. There is more generated
clauses with the CRO4 than with the CRO3. The difference between the gener-
ated clauses within the revisetime by CRO4 and CRO3 is higher than difference
between the generated clauses within the inspecttime.
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Fig. 5.5. Total Number of Generated Clauses within the inspecttime and the
revisetime.

See graph 5.6 for the time responses within the inspecttime. The time nec-
essary for responses decreases with an amount of the clauses revised within
the revisetime. The time responses do not depend on the number of the gen-
erated states. The time responses of the CRO4 community revision operator
are a little higher than the time responses of the CRO3 community revision
operator although the number of the generated states is lower. It is necessary
to be aware of the fact that we have to consider an operation performed with
every generated clause. With growing amount of knowledge there grows com-
plexity of the operations performed with every generated clause, for example
subsumption process. Then the time responses can grow although the num-
ber of the generated states is decreased (see following experiment). The time
responses with the CRO3 operator are very low due to the fact that most of
the clauses from the gbb are revised within the revisetime - it is an extreme
operator and the creation of the clauses revised within the revisetime takes
a lot of the time.
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Fig. 5.6. Time Responses within the inspecttime.

5.4 Utilization of Domain Knowledge in inspecttime

Let us define now the community inspection phase in such ways:

ebbt(θ) ∪ gbb ` goalt or
ebbt(θ) ∪ gbb ∪ event lemmast(θ) ` goalt.

(5.1)

In the contrast of classical theorem proving task we are able to separate the
axioms submitted to the theorem proving task into the disjunctive parts. The
time responses depends on the number of the generated clauses and on the
operations performed with every generated clauses. Our attempt is to reduce
the CLOSE list used by the searching algorithm for forward subsumption pro-
cess within the theorem proving process. We removed ebbt(θ) from the CLOSE

list and we applied both ways of the community inspection phase defined in
equation 5.1. See the graph 5.7 for the number of the generated clauses and
the graph 5.8 for the time responses within the inspecttime when the first
theorem proving process in equation 5.1 is used.

We found that the number of the generated clauses has not been changed
in both cases. Be aware that it need not to be always true. We reduce the
time responses in both cases due to reduction of the operations performed
with every generated clauses.

We experimented with different settings of the CLOSE list. The CLOSE list
was either set as an empty after the initialization of the theorem proving task
or set to event lemmast(θ) only. We reduce the time responses in both cases
although the number of the generated clauses is increased in both cases. The
time responses were lower than in the case of previous setting of the CLOSE



58 5 Experiments

list due to the fact explained above. The number of the generated clauses was
higher because the subsumption process was not such efficient.
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5.5 Model Elimination and Literal Preference

We have combined set of support strategy (below denoted as SOS) with model
elimination method for the theorem proving process within the inspecttime
(see section 4.2.2). This strategy is called SOS-ME. We compare a pure SOS

strategy with SOS-ME strategy.
Experiments have confirmed the reduction of the number of the generated

clauses and the reduction of the time responses within the inspecttime if we
use SOS-ME strategy. For an explanation of the reductions see 4.2.2.

We have expanded SOS-ME strategy by the ability to choose the literal in
the clause which will be eliminated (see section 4.2.2). This feature is called
a literal preference. Experiments have confirmed further reduction of the
number of the generated clauses and reduction of the time responses within
the inspecttime. For an explanation of the reductions see 4.2.2.

See the graph 5.9 for the number of the generated clauses and the
graph 5.10 for the time responses within the inspecttime. We used tech-
nologies:

• SOS – SOS strategy,
• SOS-ME – SOS-ME strategy and
• SOS-ME, LP – SOS-ME strategy supported by the literal preference.

Time limit of 210 seconds has been set, the computation was interrupted
then. SOS-ME strategy supported by the literal preference succeeded to derive
all queries, while each of remaining technologies was not successful in some
queries.

We proved within the experiments that by implementation of model elim-
ination and the literal preference methods we improved revisetime in the
sense of the number of the generated clauses and of the time responses.
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Fig. 5.9. Number of Generated Clauses within the inspecttime.
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5.6 Proof Lemmas, Caching, Lemmatizing, Deletion with

Lemmas

We proposed the lemmas generation as a side effect of the theorem proving
process within the inspecttime (see section 4.2.2). Proof lemmas are ground
unit clauses (containing only the constants) in most cases in our domain. We
used three technologies how the proof lemmas are applied within the same
proof where they are generated:

• deletion with lemmas method,
• lemmatizing and
• caching.

We compared the technologies’ impact to the theorem proving process within
the experiments. The theorem proving process has been supported by ]min

(no deduction within revisetime) and by various combination of considered
technologies, namely: SOS-ME strategy, the literal preference, generation of the
proof lemmas, deletion with lemmas method, caching, lemmatizing. See the
graph 5.11 for the number of the generated clauses and the graph 5.12 for the
time responses within the inspecttime. The technologies are denoted in the
graphs in a such way:

• No Lemma – the generation of the proof lemmas is not used,
• DwL – deletion with lemmas method,
• C – caching and
• L – lemmatizing.

Deletion with lemmas method always reduces the number of the generated
clauses due to the ability to remove the tautologies. The reduction is very
strong. Effectiveness of deletion with lemmas method is supported by the fact
that our domain is characterized by high number of constants in literals. Then
the subsumption process is able to remove more tautologies with respect to the
proof lemmas represented by ground facts in most cases. Caching always re-
duces the number of the generated clauses too. The reduction is light because
the number of successful applications of caching is low. Lemmatizing increases
the number of the generated clauses in some cases. When goalt contains vari-
ables then lemmatizing increases the number of the generated clauses because
the unification process supported by the proof lemmas is more successful. The
combination of the technologies (except the combination of the deletion with
lemmas method and caching - there is light reduction) increases the number
of the generated clauses with respect to the number of the clauses generated
by the proof supported by the deletion with lemmas method only.

Deletion with lemmas method reduces the time responses due to the re-
duction of the number of the generated states. The resulting reduction is very
strong. The lemmatizing reduces the time responses too. This is probably
due to the fact that the system chooses for expansion process the clauses
from which it was possible to derive empty clause. The reduction is not as



62 5 Experiments

116813

26348

115252
120349

25849 26982 26805

0

20000

40000

60000

80000

100000

120000

140000

No  Lemma DwL C L DwL, C DwL, L DwL, L, C
���)���)����� �7�7�

� �
�� �  
¡¢ £
�
¤�  
¥¦ �
§ ¨
© ¥ �
ª�
ª

Fig. 5.11. Number of Generated Clauses within the inspecttime.

strong as in the case of using deletion with lemmas method. The number of
the clauses expanded and moved to SOS list (see section 4.2.2) is lower than
in the case of using caching. Be aware of the fact that this claim depends
on the considered domain, consequently it need not to be true in different
domains (gbb). Caching reduces the time responses due to the reduction of
the number of the generated states. The reduction is light. Combination of
the deletion with lemmas and lemmatizing decreases the time responses with
comparison of using isolated methods. Combination of the Deletion with lem-
mas method and caching increases the time responses with comparison of
using deletion with lemmas method only. The reason is the fact that the light
reduction of the time responses by the caching is not so strong to cover the
requirements increased by the operations performed over the USABLE list (see
section 4.2.2), which is expanded about the proof lemmas. Adding caching
to the deletion with lemmas method and lemmatizing decreases the time re-
sponses. The additional operations over the USABLE list are already included
by using of lemmatizing. Now caching reduce the number of the generated
clauses then it reduce a little the time responses. Successful application of
caching is again low.

With respect to our experiments we recommend the most effective tech-
nology: deletion with lemmas method. Supporting of deletion with lemmas
method by caching and lemmatizing can increase the number of the gen-
erated clauses and consequently the time responses. Deletion with lemmas
method cannot increase the number of the generated clauses. In the worst
case deletion with lemmas method increases slightly the time responses be-
cause the requirements of the subsumption process are increased. We found
some such queries within the experiments. But for us it is more important that
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Fig. 5.12. Time Responses within the inspecttime.

by using of deletion with lemmas method we reduce minutes or seconds for
some queries than that we add milliseconds for some queries. Caching is care-
ful technology which negligible influence. While lemmatizing is more radical
technology which either more decreases or more increases the time responses
of the theorem proving process.
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5.7 Event Lemmas, Caching, Lemmatizing, Deletion

with Lemmas

We can make similar conclusion about the technologies as in the section 5.6.
Using the event lemmas is not so efficient as using the proof lemmas. Proof
lemmas are generated within the specific proof and the probability of their
using by any technology is higher than using of the event lemmas which are
deduced within revisetime without the relation to the future goalt. That is
the reason why the deletion with lemmas method and lemmatizing have gen-
erated more clauses than in the case of using the proof lemmas. The caching
has not changed with respect to caching supported by the proof lemmas. The
combination of the technologies decreases somewhat the number of the gen-
erated clauses with respect to the proof supported by deletion with lemmas
method only. See the graph 5.13 for the number of the generated clauses and
the graph 5.14 for the time responses within the inspecttime. The technolo-
gies are denoted in the same way as in the section 5.6.
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Fig. 5.13. Number of Generated Clauses within the inspecttime.

Deletion with lemmas method decreases the time responses. The reduction
is strong but not as high as in the case of the proof supported by the proof
lemmas. Lemmatizing increases the time responses here because the number
of the generated clauses is higher than in the case of of the proof supported
by the proof lemmas. The caching has not changed with respect to caching
supported by the proof lemmas. The combination of the technologies decreases
a little the time responses with respect to the proof supported by deletion with
lemmas method only.
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Fig. 5.14. Time Responses within the inspecttime.

As we mentioned above using the event lemmas is not as efficient as using
the proof lemmas. That is why we will prefer the proof lemmas to the event
lemmas.
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5.8 Proof Lemmas, Event Lemmas

We found within the experiments that using of the proof lemmas is more effi-
cient than using of the event lemmas (see section 5.7). We were interested if
by appending of the event lemmas to the proof lemmas can we improve the
inspecttime in the sense of the time responses. We used the event lemmas
generated by the ]90 community revision operator. We reduce the number
of the generated states by appending the event lemmas to the proof lemmas
due to the using of more knowledge by the technologies deletion with lemmas
method and lemmatizing with caching. The reduction is light. On the other
hand the time responses are increased because the forward subsumption pro-
cess took a lot of the time due to the long CLOSE list (see section 4.2.2). The
CLOSE list contains both event and proof lemmas. Unrestricted appending of
the event lemmas does not improve the inspecttime because the event lemmas
consist of huge amount of knowledge which is not related to goalt.

We experimented with appending of the filtered event lemmas with re-
spect to the actual goalt. We observe reduction of the number of the gener-
ated clauses with respect to the proof supported by the proof lemmas only
and to the proof supported by the proof lemmas and the unfiltered event
lemmas. This is due to more effective utilization of the technologies deletion
with lemmas, caching and lemmatizing (more knowledge is available) and the
lemmatizing generates lower number of the clauses than in the case of using
the unfiltered event lemmas. We reduce the time responses with respect to the
proof supported by the proof lemmas only and to the proof supported by the
proof lemmas and the unfiltered event lemmas. This is due to the reduction
of the number of the generated clauses and to the reduction of the number of
used the event lemmas placed to the list CLOSE.

See the graph 5.15 for the number of the generated clauses and the
graph 5.16 for the time responses within the inspecttime.

Experiments confirm that unrestricted using of the event lemmas does not
improve the inspecttime with respect to the using of the proof lemmas. The
event lemmas consist of huge amount of knowledge which is not related to
goalt. It is necessary to filter the event lemmas with respect to goalt.
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Fig. 5.15. Number of Generated Clauses within the inspecttime.
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5.9 Comparison with OTTER Theorem Prover

We compared our theorem proving results with another theorem prover. We
have chosen OTTER theorem prover [21] based on SOS strategy. Our theorem
proving process is supported by ]min (no deduction within inspecttime),
SOS-ME strategy, literal preference, generation of the proof lemmas, caching,
lemmatizing and deletion with lemmas method. The proofs has been limited
by 180 seconds. See the graph 5.17 for the number of the generated clauses and
the graph 5.18 for the time responses within the inspecttime. The queries we
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sorted with respect to the ratio between the variables and constants in goalt

(0 – no variable, 1 – no constant).
Most often, our theorem prover generates less clauses than OTTER. There

are several queries when OTTER generates lower the number of the generated
clauses due to used UR-resolution and hyperresolution implemented within
the prover.
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Fig. 5.17. Number of Generated Clauses within the inspecttime.

Several observation holds for the time responses. There are several queries
when OTTER is faster due to used UR-resolution and hyperresolution and to
the fact that OTTER is implemented in C programming language. This pro-
gramming language is much faster than Lisp programming language used for
our theorem prover. There are just a few queries when OTTER is not able to
reply within 180 seconds.
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5.10 Conclusion

During the last years, we have gained considerable experience in design and
utilization of agents social knowledge about its environment e.g. for efficient
coalition formation in CPlanT coalition planning system. Social knowledge
proved useful for this purpose provided that it offers true up-to-date infor-
mation about the agent’s environment and about the other agents in the
community. The social knowledge can be used not only for coalition forma-
tion but it plays a role in any reasoning the agent has to perform. In relation
to its environment and to the events arising in it. This is not a rare activity -
there are many reasons why an agent in a MAS system has to reason. Let us
review just a few of them:

1. The environment is so complex that it is impossible to review all its prop-
erties in advance, instead the agent has to attempt ”understanding” or
”making sense” of available information on-line as it arrives.

2. The properties of the environment are not fixed, but they are evolv-
ing/changing during the life span of the agent - the agent has to identify
the changes by itself.

3. The agents in MAS have some private knowledge which they do not make
public. It consists of the rules which govern their behavior - they are not
public but their knowledge is important for proper decision-making during
the coalition formation phase of MAS behavior.

This report is concerned with the last case first of all, but the techniques
designed here can be applied in the other cases as well. Each agent maintains
its own model of its partners in MAS - this model is supposed to explain the
considered agents’ behavior. In an ideal case agent’s behavior is a consequence



70 5 Experiments

of this model. The agent can reason about its percepts as well as about infor-
mation it is getting from the other members of the system. If the agent has
simultaneous access to information gathered by several agents, it performs
meta-reasoning. Whenever an agent obtains some new information concern-
ing agent A, it revises its model of the agent A so that the resulting model
of A is consistent with all observations. We have defined several approaches
how to ensure such revision. We distinguish the following three core different
strategies for updating the model:

• the simplest one adds to the existing model the observed information and
nothing more is performed,

• the deductive extension enhances the existing model by consequences of
the considered observation,

• the inductive extension uses machine learning techniques to generate a
new model which is consistent with all information gathered about the
agent A up to now.

The agent uses its actual model of agent A whenever it needs to know
how the agent A will react to some request - the phase is called the inspection
phase. Complexity or time required for the inspection phase is not fixed - of
course, it is influenced by the approach applied in the revision phase.

We have implemented several different operators ensuring various versions
of model-updating as well as alternative solutions performing activities corre-
sponding to the inspection phase. The deductive part is based on the resolution
principle enhanced by some heuristics (see section 4.2), the inductive part uses
two techniques of machine learning, namely version space (section 4.3.1) and
ILP (section 4.3.2). The performance of the implemented operators has been
compared and tested in an experimental coalition planning system – CPlanT.

Our experiments (in chapter 5) verify that the suggested approach to meta-
reasoning is feasible. The agent can utilize its experience to build a model of
its peer agents which offers considerable advantage when used in its subse-
quent decision making. The complexity of the deductive revision using auto-
mated reasoning depends on the choice of used heuristics influencing number
of generated clauses. If more complex revision is used the inspection process
is faster. It seems that proper compromise ensuring optimal performance has
to be designed for each specific application. An interesting research question
remains open: Is it possible to establish a relation between syntactic properties
of the language used for description of the agent model and good choice of
these parameters?

Automated reasoning seems to be an appropriate methodology for im-
plementation of meta-reasoning capabilities. We experimented with lemmas
generated within the revisetime and the inspecttime. We recommend the
technology deletion with lemmas method supported by the lemmas generated
within the inspecttime which reduces the time necessary for the responses
in the inspecttime. The lemmas generated within the revisetime are not so
efficient.
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Interesting results are due to comparison of performance between deduc-
tive and inductive approach (see section 5.3). Inductive approach differs from
the former one by the fact that its applies generalization. The resulting re-
vised model has to be understood as a hypothesis only. This hypothesis is
able to answer some queries which have not been possed to the agent before.
This might lead to errors sometimes. Success rate of induction based on ILP
proved to be very good. The prise for this is slow-down in performance when
compared with version space based solution. It seems that in some environ-
ments both approaches could be combined - version space approach could be
used in time critical periods while in more relaxed periods ILP approach could
be applied. ILP is a very good choice in domains characterized by complex
background knowledge. This happens e.g. whenever timing of the events has
to be taken into account (information about time and its ordering has to be
described) and the rules of behavior depend on sequencing of events. Such a
behavior can be best described in the language of 1st order logic. Both deduc-
tive and inductive approaches to agent model revision proved most promising
and our experiments point to interesting new research directions which will
lead to enhancement of the systems performance and to creation of more
precise guidelines when to use which of the mentioned approaches.

5.11 Comments on Project Results

This section is supposed to evaluate the project results form the point of view
of the project white-paper from 15-May-2002.

The work has been organized (as planned in the white-paper) into four
mutually dependent workpackages:

1. Domain analysis (month 1 – month 2): Here we have analyzed the role
of the meta-reasoning process in multi-agent systems. This analysis has
been carried out in a general way, but also with respect to the domain of
planning of humanitarian relief operations. The abstract architecture for
meta-reasoning in multi-agent systems has been designed and published
in:

Pěchouček, M., Štěpánková, O., Mař́ik, V. and Bárta, J. Abstract Architecture
for Meta-reasoning in Multi-agent Systems. In: Mař́ik V., Mueller J., Pěchouček
M. (Eds.) Multi-Agent Systems and Applications III. Lecture Notes in

Computer Science. 2691 Heidelberg : Springer, 2003, p. 85-99. ISBN 3-540-
40450-3.

Tožička J., Bárta J. and Michal Pěchouček. Meta-Reasoning for Agents’ Private

Knowledge Detection. In Klusch, M., Ossowski, S.,Omicini, A., Laamanen, H.

(Eds.) Cooperative Information Agent VII, Lecture Notes in Computer

Science, LNAI 2782 Heidelberg : Springer, 2003. ISBN 3-540-40798-7

It has been decided to test the functionalities of the implemented meta-
reasoning on the CPlanT multi-agent system. The agents in the system
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perform cooperative and self-interested behaviour, however do not perform
any form of adversarial behaviour.

2. Monitoring/knowledge acquisition (month 3 – month 6): Here we have
concentrated on developing robust monitoring capability with the CPlanT
system. A powerful subscription based mechanism (see section 3) for
monitoring agent’s interaction in purely collaborative environment. For
the self-interested environment we have designed and developed a simple
intruder agent (a realization of the concept of sniffing-agent and the
chameleon-agent) (see section 3.3) that sniff the information about agent
interaction and makes this available to the meta-agent.

3. Knowledge analysis/community revision (month 6 – month 9): This phase
was the key to providing novel research results to the community. We have
tested three different approaches to analyzing the knowledge that were
made available by monitoring subsytem: simulation, deductive rea-
soning (implemented by classical theorem proving technology), and in-
ductive reasoning (implemented by Version Space and Inductive Logic
Programming machine learning techniques). All four methods have been
implemented and all but ILP have been integrated into the body of the
meta-agent. The prime objective of meta-reasoning has been to predict
agents behaviour. Little effort has been devoted to studying on an impact
of the object level agents after having the information available (commu-
nity revision phase).

4. Implementation and testing (month 5 – month 12): Within this part of
the research project we have tested meta-reasoning methods and exper-
imented with different settings and operation modes of meta-reasoning
(see chapters 5 and 5.10).

5.12 Open Questions

The results of the research project met expectation of the researchers and
answered many of the asked questions. However, given the rather wide scope
of the project and limited amount of time, there are several challenging issues
still lacking deeper investigation:

• adversarial domain: In the test domain of the CPlanT system we assume
all agents to be truth-telling, they do not change their private knowledge
over the time and more-over, we do not consider an adversarial agent that
could harm the object agent (such as blocking resources, carrying out dos
attack on selected services, providing misleading information). It would be
interesting to see how the meta-agent operates in the adversarial domain.

• adaptivity: There was little time to investigate the concept of the com-
munity revision within the project. It would be interesting to investigate
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and measure an impact of availability of the knowledge provided by meta-
reasoning capability to the object agents (e.g. increased efficiency, im-
proved security, ...). This lead to the question of how much the agents
will be happy to be monitored given the added value of their improved
performance.

• cooperation of methods: We have worked with and investigated meta-
reasoning methods separately. However, preliminary testing shows that
different approaches are suitable for different sets of data. In more complex
systems an autonomous cooperation of different meta-reasoning methods
may be interesting to investigate.

• peer-to-peer meta-reasoning : The concept of meta-agent is powerful
as it allows higher forms of reasoning without any direct burden on agents
computational resources. However, especially in the adversarial environ-
ment the agents may want to be capable of meta-reasoning on the object
level and improve their operation in the hostile environment without sub-
scribing to a central (while independent) meta-agent. Meta-reasoning in
adversarial environment must be taken down to the agents peer-to-peer
interaction.
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A

Language for Describing Object Agents’

Behavior

In this part of the appendix we describe the decision making algorithm used
by the object agents within the team allocation process.

A.1 Object Agents’ Decision Making Algorithm

Meta-reasoning activity focuses on the most important part of the object
agents’ private knowledge - the team restrictions. We could design teams,
coalitions and resource allocation for the disasters and missions if we would
be aware of this restriction type. The team restriction consists of the parts:

• restriction specifying the maximal number of the team members,
• restriction specifying non-acceptable team leaders,
• restriction specifying the locations, where the object agent does not par-

ticipate.

See section ?? for definition of the task (it consists of the proposed team,
team leader and location).

A.1.1 Restriction Specifying Maximal Number of Team Members

The object agents accept teams up to specific number of the team members. It
creates all teams, which it would accept, within an alliance formation process
with respect to the restriction specifying the maximal number of the team
members. The object agent refuses the task within the team allocation request
if it is not aware of the team proposed within specific task.

A.1.2 Restriction Specifying Non-acceptable Team Leaders

We used three the object agent’s public attributes in order to express the
restriction:
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• the object agent’s country location, like ”Suffer Terra”, ”Country-A”,
• the object agent’s city location, like ”Suffer Town”, ”Sunny Side Port”

and
• the object agents’s type, like ”Government”, ”Religious”.

These attributes with their values are joined into the leader restriction via
logical connector AND. There can be defined several leader restrictions (”or”
relation between simple restrictions), see the example A.1.2.

There are leader restrictions:

• (city ”SufferTown”) ∧ (country ”SufferTerra”) and
• (country ”Country −B”) ∧ (type ”Government”).

All object agents either from the country ”Suffer Town”, city ”Suffer Town” or from
the country ”Country-B” with type ”Government” will be refuted.

The object agent:

• refuses the task within the team allocation request proposed by another
object agent - team leader, where team leader’s description meets with
any team restriction and

• proposes no team parameters within the team proposal to coalition leader,
where coalition leader’s description meets with any team restriction.

A.1.3 Restriction Specifying Non-acceptable Locations

To every city in suferterra scenario [37] is assigned the population composition,
see the example A.1.3.

The city ”Suffer Town” consists of:

1. 65% of atheist,
2. 20% of christian,
3. 7% of muslim,
4. 4% of native and
5. 4% of other population.

The object agent may have defined one or more (”or” relation between
simple restrictions) population restrictions, for example: native - 80. There
are cities (locations) which have 80% or higher native people. The object
agent:

• refuses the task within the team allocation request invoked in order to
participate in locations with population equal or higher than any the object
agent’s population restriction and



A.2 Object Agents’ Decision Making Algorithm Formally 77

• does not propose its services within the team proposal if it proposes the
team allocated to participate in locations with any population equal or
higher than any the object agent’s population restriction.

A.2 Object Agents’ Decision Making Algorithm

Formally

Let us describe the object agent’s decision making more formally. We use the
first order logic without equality and function symbols. We utilize the relation
operator <. First we express the object agent’s behavior - the set denoted as
tbeh:

If the object agent accepts the task (team allocation request), then it
accepts the team (number of team members), team leader and location defined
within the task. If the object agent refuses the task then it refuses minimal
at least one of the task parameter:

∀L∀C∀Naccept(L,C,N) ⇔
accept city(C) ∧ accept leader(L) ∧ accept number(N).

If the object agent accepts specific number of the team members then it
will accept lower number of the team members. If the object agent refuses
specific number of the team members then it refuses higher number of the
team members:

∀M∀Naccept number(N) ∧ M < N ⇒ accept number(M).

If the object agent accepts the population number then it accepts lower pop-
ulation number. If the object agent refuses the population number then it
refuses higher population number:

accept population(P,N) ∧ M < N ⇒ accept population(P,M).

If the object agent accepts specific location then it accepts all location’s pop-
ulation numbers. If the object agent refuses specific location then it refuses at
least one of the location’s population number. Following formulae are defined
with respect to the sufferterra scenario [37].

accept population(”ATHEIST”, 65)
∧ accept population(”CHRISTIAN”, 20)
∧ accept population(”MUSLIM”, 7)
∧ accept population(”NATIV E”, 4)
∧ accept population(”OTHER”, 4)) ⇔ accept city(”Suffer Town”),

accept population(”ATHEIST”, 54)
∧ accept population(”CHRISTIAN”, 23)
∧ accept population(”MUSLIM”, 3)
∧ accept population(”NATIV E”, 1)
∧ accept population(”OTHER”, 9)) ⇔ accept city(”Central Town”),
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accept population(”ATHEIST”, 30)
∧ accept population(”CHRISTIAN”, 8)
∧ accept population(”MUSLIM”, 60)
∧ accept population(”NATIV E”, 1)
∧ accept population(”OTHER”, 1)) ⇔ accept city(”Sunny Side Port”),

accept population(”ATHEIST”, 70)
∧ accept population(”CHRISTIAN”, 15)
∧ accept population(”MUSLIM”, 1)
∧ accept population(”NATIV E”, 10)
∧ accept population(”OTHER”, 4)) ⇔ accept city(”Central Lake City”),

accept population(”ATHEIST”, 68)
∧ accept population(”CHRISTIAN”, 16)
∧ accept population(”MUSLIM”, 1)
∧ accept population(”NATIV E”, 11)
∧ accept population(”OTHER”, 4)) ⇔ accept city(”St. Josephburgh”),

accept population(”ATHEIST”, 70)
∧ accept population(”CHRISTIAN”, 13)
∧ accept population(”MUSLIM”, 0)
∧ accept population(”NATIV E”, 15)
∧ accept population(”OTHER”, 2)) ⇔ accept city(”North Port”),

accept population(”ATHEIST”, 12)
∧ accept population(”CHRISTIAN”, 3)
∧ accept population(”MUSLIM”, 0)
∧ accept population(”NATIV E”, 85)
∧ accept population(”OTHER”, 0)) ⇔ accept city(”Coast V illage”),

accept population(”ATHEIST”, 0)
∧ accept population(”CHRISTIAN”, 0)
∧ accept population(”MUSLIM”, 0)
∧ accept population(”NATIV E”, 100)
∧ accept population(”OTHER”, 0)) ⇔ accept city(”Sunset Point”),

accept population(”ATHEIST”, 75)
∧ accept population(”CHRISTIAN”, 24)
∧ accept population(”MUSLIM”, 1)
∧ accept population(”NATIV E”, 0)
∧ accept population(”OTHER”, 0)) ⇔ accept city(”Town−A”),

accept population(”ATHEIST”, 75)
∧ accept population(”CHRISTIAN”, 25)
∧ accept population(”MUSLIM”, 0)
∧ accept population(”NATIV E”, 0)
∧ accept population(”OTHER”, 0)) ⇔ accept city(”City −A”),
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accept population(”ATHEIST”, 70)
∧ accept population(”CHRISTIAN”, 20)
∧ accept population(”MUSLIM”, 8)
∧ accept population(”NATIV E”, 0)
∧ accept population(”OTHER”, 2)) ⇔ accept city(”Town−B”),

accept population(”ATHEIST”, 78)
∧ accept population(”CHRISTIAN”, 20)
∧ accept population(”MUSLIM”, 1)
∧ accept population(”NATIV E”, 0)
∧ accept population(”OTHER”, 1)) ⇔ accept city(”City −B”),

accept population(”ATHEIST”, 30)
∧ accept population(”CHRISTIAN”, 0)
∧ accept population(”MUSLIM”, 65)
∧ accept population(”NATIV E”, 0)
∧ accept population(”OTHER”, 5)) ⇔ accept city(”Town− C”).

We append formulae about possible the object agent’s restrictions - the
set denoted as tres. We suppose one specifying maximal number of the team
members and specific population (more restriction on one type has no sense).
If there is a restriction specifying the maximal number of the team members
for example x, y = x+ 1 then the formulae are appended:

accept number(x),

¬accept number(y).

If there is no restriction specifying the maximal number of the team members
then the formula is appended:

∀Xaccept number(X),

If there is a restriction specifying the population number of specific type type
for example x,y = x− 1 then the formulae are appended:

accept population(type, y),

¬accept population(type, y).

If there is no restriction specifying the population number of specific type type
the formula is appended:

∀Xaccept population(type,X),

Let us focus now on the restrictions specifying non-acceptable team lead-
ers. We transform the team leader restrictions to DNF form. We utilize at-
tributes described in section A.1.2 as literal names with two parameters: re-
stricted value equivalent to the attribute type and variable equivalent to the
object agent (team leader). One team leader restriction is defined via AND
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logical connector over literals equivalent to the attributes. Full leader restric-
tion is defined via OR logical connector over simple leader restrictions. Let
us denote the team restriction as leader restriction(L), where L is the team
leader (see the example A.2).

The leader restrictions from the example A.1.2 is transformed to the form:
(city(L, ”SufferTown”)∧ country(L, ”SufferTerra”))∨ (country(L, ”Country−
B”) ∧ type(L, ”Government”)).

If leader restriction(L) 6= nil we append the formula:

∀L ¬accept leader(L) ⇔ leader restriction(L),

else we append the formula:

∀L accept leader(L).

We append knowledge 1 about all the A object agent’s cooperators in the
system - all object agents except A - let as denote them as ε(A) [1]. Let us
define at s as a set of the attributes (ati) for the object agent’s description,
we suppose that it is a finite set:

at s = {ati}. (A.1)

The attribute ati have several possible values, we suppose that it is a finite
set:

∀ati ∈ at s : ati = {valuej}. (A.2)

We append facts about A object agent’s cooperators according to the
algorithm:

∀Ai ∈ ε(A) :
∀ati ∈ at s :
actual value = get value(Ai, ati);
∀valuej ∈ ati :
if actual value == valuej

append fact(ati(Ai, valuej));
else

¬append fact(ati(Ai, valuej));

(A.3)

The object agent accepts the task within the team allocation request only
if:

1 It is done only if leaderrestriction(L) 6= nil
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tbeh∪tres ` accept(team leader, location, number of team members). (A.4)

The object agent refuses the task within the team allocation request only
if:

tbeh ∪ tres ` ¬accept(team leader, location, number of team members).
(A.5)





B

Technical Description of Monitoring Process

In this Appendix we want to give the reader a clear, technical explanation of
the monitoring process in collaborative environment.

Provided that we haveΘ as set of all the agents in the community [1], meta-
agent Am, a set of all the object agents µ(Am), an alliance members of the
object agent Ai - µ(Ai) [1] we have the task τ as a triple 〈loc(τ), ε(τ), tl(τ)〉:

• the task location loc(τ),
• the team leader tl(τ) and
• the team members ε(τ) defined in a such way [1]:

ε(τ) ⊆ µ(Ai) ∪ tl(τ). (B.1)

The team allocation request from the team leader to the team member Ai

can be either accepted or refused. If the request is accepted then the event
belief formula is generated (the object agent has accepted the task within the
team allocation request):

accept(Ai, tl(τ), loc(τ), |ε(τ)|), (B.2)

else the complementary event belief formula is generated (the object agent
has refused the task within the team allocation request):

¬accept(Ai, tl(τ), loc(τ), |ε(τ)|). (B.3)

The following event belief formula is generated in both cases, the team allo-
cation request has been either accepted or refused (the team leader accepts
the team counting of |ε(τ)| members):

∃X∃Y accept(tl(τ), X, Y, |ε(τ)|). (B.4)

We will focus now on communication acts within the contract net protocol
before the team allocation process. The object agent A0 proposes the team
to the object agent A1 via proposed services and the deliver times. We will
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estimate proposed team due to the reasoning simulation. The result of the
reasoning simulation process (searching algorithm) consists of several teams,
which any could be proposed.

Let us define a possible proposed team εp(A0, τ)i by the object agent A0

to the object agent A1 within the team proposal for the mission m . There is
a set of all the possible proposed teams εs(A0,m) = {εp(A0,m)i}, where we
are not sure which one has been really proposed. The event belief formula can
be generated (the object agent A0 accepts the object agent A1 as the team
leader in gbb) if this condition is valid:

∀εp(A0,m)i ∈ εs(A0,m) : εp(A0,m)i 6= ∅. (B.5)

Next event belief formula can be generated (the object agent A0 accepts the
object agent A1 as the team leader and the object agent A0 would participate
in loc(m) with services in gbb) if this condition is valid:

A0 ∈
⋂

i

εp(A0,m)i. (B.6)

The event belief formula can be generated (the object agent A0 either does
not accepts the object agent A1 as the team leader or the object agent A0

would not participate in loc(m) with services in gbb) if this condition is valid:

∀εp(A0,m)i ∈ εs(A0,m) : A0 /∈ εp(A0,m)i. (B.7)

The last event belief formula says that the object agent A0 accepts the team
counting the team members:

min
i

(|εp(A0,m)i|). (B.8)

We suppose that the meta-agent is present in the system before any plan-
ning phase of the system. The condition is satisfiable in collaborative environ-
ment. The object agents adopt their decision making algorithm with respect
to unsuccessful attempts to form a team. We can use the reasoning simula-
tion for generation of event belief formulae about previous task rejections,
although the meta-agent has lost some planning actions.

For every possible proposed team we define the set of the object agents,
which could participate with services but they have not been included -
cεp(A0,m)i. The same as we defined the set of all possible proposed teams
εs(A0,m) we define a set of all teams of not included object agents cεs(A0,m) =
{cεp(A0,m)i}, which could participate. Let us suppose now that there is only
one proposed team and only one agent which could participate and it has not
been included in the team:

|cεs(A0,m)| = 1 ∧ |cεp(A0,m)1| = 1, cεp(A0,m)1 = {AK}. (B.9)

The task with the parameters 〈loc(m), εp(A0,m)1 ∪ {AK}, tl(m)〉 has been
refused earlier or the object agent A0 does not accept the number of the team
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members equivalent to the team εp(A0,m)1 ∪ {AK} 1. It is valid:

¬
∧

Ai∈σ accept(Ai, A0, loc(m), |εp(A0,m)1 ∪ {AK}|)
∨
¬∃Xaccept(A0, X, loc(m), |εp(A0,m)1 ∪ {AK}|),

where σ = (εp(A0,m)1 ∪ {AK}) \ {A0}.

(B.10)

Now, let us suppose that:

|cεs(A0,m)| = 1 ∧ |cεp(A0,m)1| ≥ 1. (B.11)

For all the object agents, which could participate but have not been included
in the team, it is valid previous equation:

∧

Aj∈cεp(A0,m)1

(
¬

∧

Ai∈σj
accept(Ai, A0, loc(m), |εp(A0,m)1 ∪ {Aj}|)

∨
¬∃Xaccept(A0, X, loc(m), |εp(A0,m)1 ∪ {Aj}|)

),
where σj = (εp(A0,m)1 ∪ {Aj}) \ {A0}.

(B.12)

Let us suppose now that:

|cεs(A0,m)| ≥ 1 ∧ |cεp(A0,m)1| ≥ 1. (B.13)

Now we are not sure which possible proposed team is valid then previous
equation is joined with a conjunction over all the possible proposed team:

∨

cεp(A0,m)k∈cεs(A0,m)

(
∧

Aj∈cεp(A0,m)k

(
¬

∧

Ai∈σjk
accept(Ai, A0, loc(m), |εp(A0,m)k ∪ {Aj}|)

∨
¬∃Xaccept(A0, X, loc(m), |εp(A0,m)k ∪ {Aj}|)

)
),
where σjk = (εp(A0,m)k ∪ {Aj}) \ {A0}.

(B.14)

Above discussion is valid only if

∀cεp(A0,m)k ∈ cεs(A0,m) : cεp(A0,m)k 6= ∅. (B.15)

If the condition does not hold then tautology event belief formula could be
generated.

1 We used the same functions (loc, tl) as defined above.
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9. Mař́ık, V., Pěchouček, M., Štěpánková, O.: Social knowledge in multi-agent sys-
tems. In Luck, M., et al., eds.: Multi-Agent Systems and Applications. Number
2086 in LNAI. Springer-Verlag, Heidelberg (2001)

10. Maes, P.: Computational reflection. Technical report 87-2, Free University of
Brussels, AI Lab (1987)
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